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SECTION I: Introduction

A current trend in physics and technology in the world today is toward solid-state
physics and superconductors. Whether in a newspaper, magazine, or professional
journal, superconductors have been a topic of much public interest for the last twenty
years. Despite being so popular for so long, it does not seem that the fascination people
have with superconductors is beginning to fade. What is it about such a complicated
topic that would bring so much attention to the often overlooked and otherwise unnoticed
scientific community? The answer is actually very simple: The benefits to society. The
impact that superconductors have on the average person’s life today is unbelievable with
applications ranging from transistors to MRI’s. The future impact of commercially
viable superconductors is even more staggering. Designs for magnetically levitated
vehicles, electrical power distribution systems, and power generators that utilize
superconductors are not just the fancy dreams of science fiction, but slowly becoming
reality. The research and development of such beneficial systems for mankind provides
ample justification for the necessary investigation and experimentation that will lead to a
better understanding of what superconductors are how their applications can improve
everyday lives.

What is a superconductor and how does it work? In order to answer that inquiry,
two other questions must be addressed first: What does it mean to be an electrical
conductor, and how does a material for that matter “conduct™? It is easiest to start by
stating that all atoms in the universe are composed of elementary particles called protons,
neutrons, and electrons, each of which has a property called charge associated with it.
Charge is an intrinsic property of matter that affects the way that all matter interacts.
Objects can be positively charged (like protons), negatively charged (electrons), or
neutral (neutrons). In addition, objects with similar charges repel one another while
objects with opposite charges are attracted to one another. Charge is measured in
coulombs, where one coulomb is amount of charge that passes through a cross section of
wire in one second when an electric current of one ampere flows in the wire.! The
electrostatic force of attraction and repulsion between two objects is governed by
Coulomb’s Law, which can be expressed mathematically as:

[1] F=_9%

dre,r’
where q; and q; are the charges on the two objects, ¢, is a constant called the permittivity
of free space, and r is the distance between the two objects. In an atom, the protons and
neutrons are clumped together in the nucleus at the very center of the atom while the
electrons occupy orbitals, or shells, surrounding the nucleus. Because the amount of
positive charge on a proton is equal to the magnitude of negative charge on an electron,
the electrons are attracted to the protons through Coulomb’s Law. Thus, the attraction
between electrons and protons is electrical in nature as opposed to gravitationally as in
the case of the planets. The problem with that model is that classic electromagnetic
theory predicts that an accelerating charge emits electromagnetic radiation. An electron
orbiting a nucleus experiences a centripetal acceleration inward due to the electrostatic

! Halliday, D, Resnick, R & Walker, J. Fundamentals of Physics 6™ Ed. John Wiley & Sons Inc. New
York, NY. ©2001




force between the nucleus and the electron. Thus the electron should be constantly
radiating energy and spiraling into the nucleus, a situation that does not occur. The only
known physical mechanism that allows electrons to remain bound to a nucleus is the
quantization of an electron’s energy, i.e. the electrons surrounding the nucleus are only
able to hold specific amounts of energy called quanta. The scientific theory that
describes the behavior of quanta is called quantum theory and it plays a crucial role in the
explaining the properties and behavior of supe,rconductors'.

An electron bound to a nucleus can only hold quantized amounts of energy called
energy levels. An electron can only gain energy if the energy it receives is enough to
move to a higher energy level. Similarly, it can only lose energy if the energy given off
is enough to drop the electron into a lower energy level. A simplified version of quantum
theory predicts that two electrons are allowed to fill the first energy level, or shell since
the atom 1is a three dimensional object. Eight electrons go in the second shell, eighteen in
the third, and n’ in the n™ level. The outermost shell that contains electrons in an atom is
called the valence shell. The principle of least action says that every atom tries to
achieve the lowest possible energy state, which will occur when an atom has filled its
valence shell. Thus, atoms are trying to gain or lose electrons in an effort to achieve their
lowest possible energy state. Since atoms with one, two or three electrons in their outer
shell want to get rid of those electrons; they become very easy to remove from an atom.
Conversely, atoms with five, six, or seven electrons in their valence shells try to gain
electrons.

An electrical current is a moving electric charge and a moving electron naturally
fits that description as it holds a negative charge of magnitude e = 1.602 x 10™"°
Coulombs. In certain solid materials called conductors, electrons (i.e. charge) can move
about from atom to atom with relative ease. That is why metals are good conductors;
when the atoms of a specific metal bond together to form a solid, all the atoms have
valence electrons that they want to get rid of, thus the electrons can leave the atom with
relative ease. Insulators are materials that do not give up electrons readily because they
have their valence shells almost filled or are already in their lowest possible energy state.
Those materials try to retain electrons, making it very hard for a current to flow.
Semiconductors, such as silicon are materials that fall somewhere in between conductors
and insulators; they allow a current to pass through them albeit a very small one.

Since ancient times people noticed that electrical phenomena were similar to
magnetic phenomena, but it was not until 1819 when Hans Christian Oersted was
performing experiments using electrical currents. During one trial, he accidentally placed
his compass too close to a wire that had electricity flowing through it. Investigating the
matter further, Oersted found that when he moved the compass close to the wire, the
needle always pointed perpendicular to the wire. The only explanation for the behavior
of the compass was that the current in the wire generated a magnetic field that aligned
with the magnetic field of the compass. Michael Faraday reasoned that if a current could
generate a magnetic field then a magnetic field should be able to generate an electrical
current in a wire. He termed the process by which that happens induction, i.e. a magnet
induces a current to flow. Induction is the basic principle behind an electromagnet;

* The physics of superconductivity is based on how electrons behave inside materials and interact with
many atoms. For a description of electron interactions with one atom present, see the Franck-Hertz
Experiment in Appendix A.



current in the coils of a wire wrapped around a conducting rod induces a magnetic field
inside the rod and turns it into a magnet. Faraday realized the impact of how his theory
could be applied to real world applications and built the world’s first crude electrical
motor. Soon after Faraday’s discovery, the industrial age began and electrical power was
distributed to homes and factories. With the increased demand for electricity came an
increased need to generate and distribute it.

There was one problem with large power distribution systems; they lost large
amounts of energy to the surrounding environment in the form of heat. The cause of the
energy loss was electrical resistance. Resistance is exactly what it sounds like, an
opposition to electrical current. Most conductors experience resistance according to a
relationship called Ohm’s Law: The potential difference (voltage) applied across a
conductor is directly proportional to the current that can pass through that conductor.

The electrical potential is the energy per unit charge at a given point. A difference in
electric potential between two points causes electrons to move because all objects have a
tendency to be in the lowest possible energy state. Thus, if there is a difference in
potential energy, electrons will flow from a region of higher potential to lower potential,
generating a current. Of course, as the electrons flow, they interact with other electrons
as well as nuclei of the atoms that make up a conductor through collisions. Energy is lost
in the collisions and is released as heat. More electron collisions result in a greater
resistance to electrical current and the object through which electricity is flowing will
have a greater resistance. That creates a problem for conducting wires because the
greater the current that is passed through a wire, the more energy is released as heat and
the hotter the wire becomes. If the wire was to get too hot; then it would melt and the
flow of electricity would stop. To further complicate things, objects that are good
electrical conductors are also good thermal conductors. As resistance releases more heat,
the heat flows through the conductor, giving more energy to the atoms and electrons
inside, further driving up the resistance of the object, which making it even harder for a
current to flow.

For this reason, in 1911 Heike Kamerlingh Onnes began experiments to test the
electrical properties of various metals at low temperatures using liquid helium (~ 4 K). It
was his hypothesis that in a lower state of energy, there would be less resistance to the
flow of electricity in metals. Onnes had expected to find resistance drop exponentially
with temperature and then eventually level off to a limiting resistance that would never be
able to be overcome. He observed that indeed resistance dropped as a function of
temperature but he also observed something unexpected and astonishing. To Onnes’
surprise, he found that around 4 K, mercury completely lost all resistance as did various
other metals. He even formed a ring out of mercury, submerged it in liquid helium, and
passed a current through it. Onnes then allowed it to sit like that, while making sure there
was always plenty of coolant around the mercury. After a year, he measured the current
in the ring and found that it had persisted virtually undiminished!” Often scientists will
talk about physical phenomena approaching zero, or being negligible, but very rarely do
they find something as remarkable as Onnes had. Onnes termed his new discovery
superconductivity and described the temperature at which a superconductor lost
resistivity as the critical temperature (T.). The scientific community realized the

? Mayo, Jonathan L. Superconductivity: The Threshold of a New Technology. Tab Books Inc. Blue Ridge
Summit, PA. ©1988.




importance of Onnes’ discovery and quickly rushed to find materials with higher critical
temperatures. Liquid helium is relatively expensive to produce so the prospect of finding
a commercially viable superconductor that had a higher T, was very lucrative.

All the known metals were subjected to test after test and when they were
exhausted, combinations of different metals were tested to see if any would yield
significant results. Unfortunately, progress towards raising the critical temperature
stalled for 60 years before IBM researchers Alex Miiller and Georg Bednorz had
constructed a ceramic superconductor with a critical temperature of 30 K>. Soon after, in
1987, Paul Chu and a research team at the University of Houston reported developing a
material that would become superconducting at 98 K, which could be cooled using liquid
nitrogen, a safer and more readily available cryogen. With the development of these new
“high temperature” superconductors, the field of solid-state physics was rejuvenated with
the hope of inventing materials that would become superconducting at room
temperatures. Even at the dawn of the 21*' century, resistance still limits not only power
lines, but the size of processor chips for computers and other electrical devices as well.
This investigation was carried out with two needs in mind: The obvious need for the
development of materials to improve the quality and efficiency of electrical devices, and
the need to expose future generations of scientists to such an important field of study.

* Mayo






magnitudes of a,, a,, a3 correspond to the inter-atomic spacing in the direction of a,, aj,
a; respectively. The primitive translation vectors define the unit cell, which serves as the
basic building block for the crystal. It is important to note that the choice of the primitive
translation vectors is arbitrary, but often vectors are chosen that will be able to exploit the
symmetry of a given structure. The vector T = Aa, + Ba, + Cajs is called the (crystal)
translation vector and defines the translation of the unit cell. Reflection and rotation are
some other symmetry operations that can be applied to the unit cell.

Figure I1.a demonstrates how r defines the unit cell and the translation by T for a
cubic lattice. The figure also shows how the lattice will look identical when viewed from
either r or r’. That will be the case when the crystal is so large that atomic scales are
insignificant and the lattice looks as if it extends to infinity in all directions. The cell that
contains the smallest possible volume of any cell that can be constructed in the lattice is
the unit cell. That is an important aspect of the unit cell because it is necessary for the
unit cell to be the building block of the lattice. The minimum volume can be defined
through vector calculus to be the volume of a parallelepiped defined by the primitive
translation vectors:

[.1] V =|a ea,xa,

There is only one lattice point per primitive unit cell, meaning that if a parallelepiped
with eight corners has a lattice point at each corner, then each lattice point would be
shared among eight adjoining cells so that the total number of lattice points in one cell
would be

8(1/8) = 1. Similarly, the basis associated with a primitive cell is called a primitive
basis’, because no other basis will contain fewer atoms. The basis may consist of one
atom, or a molecule that is placed at every point within the lattice structure. Figure II.b
shows how a simple two-dimensional lattice can be combined with a two-atom molecule
to form a simple crystal structure.
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It turns out that not every lattice can generate a crystal structure because in order to do so,
the lattice must satisfy certain collections of symmetry operations, such as reflection
across a plane and rotation about an axis. In three dimensions, fourteen basic lattices
fulfill the symmetry requirements and they can be reclassified into seven basic cells
because of the similarity in symmetry between many of the structures. The systems are:
triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal, and hexagonal. As an
example, the cubic group includes three structures known as the square cubic, the face
centered cubic (fcc) and the body centered cubic (bcc). The face centered cubic is a cube
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Reciprocal Space and Diffraction

Every crystal can be represented using one of two lattices, the crystal lattice
defined in the previous section and a reciprocal lattice, which is a representation of the
real lattice in reciprocal, or “k” space. A microscopic image, if properly resolved, would
be a map of the crystal structure in real space, while a diffraction pattern is a map of the
reciprocal lattice in k-space.® The term k-space is derived from the fact that observations
are measured in units of 1/distance, which are the units on the wave number k = 27/\.
Momentum is related to the wave number through p = hk, so k-space is very similar to
momentum-space and differs only by a scale factor. The two lattice representations are
related by defining the primitive vectors of the reciprocal lattice by, by, b; to be:

[11.2] 51 =2ﬂ—_%;52 =27z‘_a3$’_;l;3 =2ﬂ%

a,ed,xa, a,ed,xa, a,ed,xa,

The main purpose in defining the reciprocal lattice vectors is to simplify calculations
involving wave vectors, which are represented in k-space. The new primitive vectors
form the k-space counterpart to the translation vector T in real space called the reciprocal
lattice vector G = u;b; + usb; + usbs, where uy, uy, uz are arbitrary constants.

The set of reciprocal lattice vectors G for any particular crystal determines the
allowed x-ray diffractions through that crystal. That result can be shown, by recognizing
that any local property of a crystal will be invariant under any translation by T. This
could include a property such as charge concentration, magnetic moment density, or
electron number density. Because the latter is a function of r, the distance from the
origin, the electron number density can be expressed as n(r), but because it is invariant
under any translation T, it must be periodic with T and satisfy the condition:

[11.3] n(r) =n(r+T)

a condition that is an ideal situation for Fourier analysis. A Fourier transform will turn a
function of real space into a function of reciprocal space, resulting in equation 11.4, which
must be invariant under any crystal translation T.

[IL4] n(F)=3. nge’”
G

where ng is the complex Fourier coefficient of the transformation. Given I1.4, making
the correct substitutions yields:
ms) n(F+T) =2 nee ™" =3 noe e =3 s =n(F)

G G G
because exp (2mi*q) = 1, where q is any integer. Since p=u;A+u,B+u;Cisa
combination of integers, p is an integer so:

® Kittel









Free Electron Model

Now that a foundation for crystal structures has been introduced, the behavior of
electrons within the crystal can now be discussed. To ease the transition into this topic, it
is often best to approximate the behavior of electrons using what is known as the Free
Electron Model. The model treats electrons in a lattice as a gas, which has no potential
acting on it. Although an oversimplification of what is physically going on, the model
accurately predicts the kinetic behavior of conduction electrons, or electrons that can
move freely throughout the lattice. It also describes how valence electrons can leave
their individual atoms and become conduction electrons. There is only one place to begin
a discussion on the electron, because of its small size, the Schrédinger equation for a free
particle in three dimensions:

[IL14] 9°¥ =E¥ > —ﬁ(i+3+3]lp(f)=5klp(f)
2m\x dy oz

Assuming the electrons are confined to a cube with the length of its sides equal to 1, the
wave function then must be periodic in 1 and solutions take on the form of a plane wave:

[IL.15] ‘I’(‘r‘) — g

where A is a constant and k, = 2n,%/1, ky, = 2n,%/1, and k, = 2n,#/1. The numbers ny, n,,
and n, are integers known as the quantum numbers and represent the energy state, or
orbital of the electron. [I1.15] can be used substituted back into the Schrodinger Equation
to find an equation for the kinetic energy of an electron in a given orbital.

2( 2 2 2) hz 2
.16 E =—\k>+k*+k*)="—k
[TL16] FoomNt 0 TR oy

For the ground state, or lowest energy state of an atom, the orbitals surrounding the
nucleus may be represented as points inside a sphere in reciprocal space. The Pauli
exclusion principle states that no two electrons in an atom can have the same four
quantum numbers (n, 1, m;, m;) at the same time. The first three numbers correspond to
the orbital that the electron fills while the fourth quantum number corresponds to an
intrinsic property of electrons called spin. Because of the exclusion principle, only two
electrons with opposite spins can occupy the same orbitals in an atom. Therefore,
electrons can only orbit a nucleus according to very strict rules. In general, if one had a
nucleus of atomic number Z, and a pile of Z many electrons, and wanted to place the
electrons around the nucleus, then one would have to do so in the following way. Two
electrons are placed in the first orbital, one with spin up and one with spin down. Then
two go in the second orbital, and two in each successive orbital on outward until all the
electrons have been placed. Because there are no vacant orbitals in between any filled
orbitals the sphere is completely filled and the atom in its ground state. The surface of
the sphere is called the Fermi surface and it separates the filled orbitals from the unfilled
ones. The Fermi surface also has a specific energy associated with it called the Fermi

11



energy (Er), which is the energy associated with the outermost electron in the ground
state of the atom. Such an electron will have a wave vector with magnitude kg so that:

11.17] E,=—%k,’
2m

Remember that the sphere that defines the Fermi surface is in reciprocal space, so the
radius of the sphere will be kg, and its volume will be (4/3)7ks’. There is only one

distinct set of principle quantum numbers ny, ny, n, for a volume (27/1 )* in reciprocal
space and two electrons can share the same set of principle quantum numbers provided
they have different spin quantum numbers. Thus the total number of electrons inside the
Fermi sphere will be the number of electrons per unit volume multiplied by the volume of
he sphere:

3 2 1/3
11.18] N=2(4/3)ﬂ*§ gk, [N
(2z/e) 3« %

where V=1 >, the volume of the atom in real space. This result may be substituted into
11.17] for an expression that shows the dependence of the Fermi energy on the electron
concentration N/V:

n? (322NY"
11.20] E, =2
2m vV

Electrical Conduction

An electrical conductor is a material in which charge, either electrons or positive
holes, can move freely. The free electron model can provide a reasonable approximation
of the motion of electrons in an external electric field. Quantum mechanics requires that
the momentum of a free electron is related to its wave vector through the equation p = hk.
In an electric field E, the force on an electron is ¢E, and Newton’s second law states:

11.21] F=hZ =—¢E

[f there are no collisions between particles inside the Fermi sphere, if a constant electric
field is applied from a time O to a time t, then each electron in the Fermi sphere will be
displaced at a uniform rate, and [I1.21] can be integrated to:

11.22] k(t) - k(0) =6k =—<Eth
Thus the entire sphere has been shifted an amount 6k. In actuality however, the electrons
of the Fermi Sphere will collide with atoms, impurities, lattice imperfections, lattice

vibrations, and other electrons. The collisions cause a decrease Fermi sphere shift and
hence reduce the acceleration of the electrons. For a period of time 7 between collisions,

12



the Fermi Sphere will be unaffected and its movement can be described using [I1.22]. By
converting wave vector to momentum through p = hk = mv and assuming the initial
velocity of the sphere was zero, a formula for the velocity of the electrons in the material
can be derived.

[1L.23] vq=eE7/m

This velocity is called the drift velocity and it represents the average flow of electrons
through a conductor. If the electric field is turned off, then at any particular time, a
snapshot of the motion of the electrons would reveal each electron moving in a random
path due to all of the possible interactions within the medium as in Figure IL.f1. All of
the random motions combine so that the average velocity of all the electrons is effectively
zero. Turning on the electric field will give an overall orientation to the velocity of the
electrons, which statistically averages to be the drift velocity: Figure I1.f2.

1 2

Fig ILf

E=0 «—E
The current density is defined to be the current per unit area within the conductor. Ifa
constant electric field is set up inside the conductor and there are n electrons per unit
volume, then the current density can be stated mathematically:

[11.24] J =nevg = ne’E7/m = oE

where 0 = ne’7/m is defined to be the conductivity of the material. For a given electric
field, by [I1.24] a higher conductivity means a greater current density in the conductor, so
obviously materials with a high conductivity are very good conductors. Similarly, a
quantity called resistivity, denoted by p = 1/0, is a measure of how poor a conductor a
material will be. The resistance of an object is directly related to the resistivity of the
material that makes up that object, i.e. resistance is a bulk property and resistivity is a
microscopic property, but the two refer to the same phenomena. In a superconducting
pellet, in the superconducting state, the resistance of the superconductor is zero; hence,
the resistivity of the material that makes up the pellet is also zero. The process by which
that happens will be discussed in due time, but first, a few more topics need to be covered
to lay the proper foundation for such a discourse.

13



Energy Bands

The free electron model accurately predicts many observed phenomena, but it is
severely limited by one simple fact; the electrons in a solid are not free, they experience a
periodic potential generated by the atoms in the lattice. It will be shown that the potential
gives rise to forbidden zones called band gaps, which are values of energy that electrons
cannot have. The energies that electrons can have are called energy bands and the amount
of electrons that fill the bands actually define whether a material will be a conductor,
insulator or semiconductor. The band structure can be explained by the Nearly Free
Electron Model, which is heavily dependent on Bragg reflection. Recall equation [I1.13],
the condition for a diffracted wave of wave vector k. In one dimension the equation will
reduce to:

[I1.25] k=x¥%G=+nwa

where a is the distance between atoms in the lattice and G = 27m/a. The region in k-space
between —w/a and #/a turns out to be the first Brillouin zone. Electrons traveling through
the crystal take on wave vectors in the form of traveling waves according to [I1.15]. In
one dimension a traveling wave at the Brillouin zone boundaries (k =+ #/a) will be Bragg
reflected back on itself, so inside the zone boundaries there are actually two traveling
waves €™ and ¢”™?, Those two waves can combine in two waves to set up a standing
wave within the zone that can be expressed as either:

Y+ =™ +e™* =2cos(mx/ a)

[11.26] Y(-) =™ —e™™* = 2isin(mx/ a)

The two standing waves concentrate electrons in different regions, as can be seen by
taking the probability density ¥*V¥ or both functions:

[I1.27a] [®(+)” = 4cos?(mx/a)
[I1.27b] [®(-)" = 4sin*(mx/a)

Equation [I1.27a] is maximized when x = 0, a, 2a,... which is the location of the atomic
cores generating the potentials. The term core is used because the nucleus of the atom
could still contain electrons and hold a net positive charge that would generate potential
energy for an electron. Equation [I1.27b] then concentrates electrons away from the
cores. The electrons that are closer to the positive cores will have less potential energy
than the electrons concentrated away from the cores, creating an energy gap between the
wave functions. Electrons below the gap have the wave function ¥(+) and electrons
below the gap have the wave function ¥(-).

However, the periodic potential caused by the lattice has not yet been taken into
account. The next step is then to develop what is known as the Kronig-Penny model for a
potential due to fixed ion sites separated by a distance a. From basic physics it is known

14



that the potential energy of one point charge due to a another is proportional to 1/r, where
r is the distance between the charges. In a periodic potential, the individual potentials of
each core will overlap to form one resultant potential that resembles the one-dimensional
periodic potential configuration of Figure II.g. Of course, a potential such as this

\@/\mﬁ....mf JINRGINE

b 0

Fig. Il.g Fig. IL.h
complicates calculations so two simplifying assumptions are made that bring the potential
to look something like the repeating square wells of Figure II.h. The first is that the
length of the whole crystal (L) is much greater then the size of the inter-atomic spacing,
so big, that the ends of the crystal are essentially at infinity. This removes the loss of
periodicity at the ends of the lattice. Fortunately, that is a reasonable simplification since
the distance between atoms is on the order of 10"'°m, and the effect of the potential at the
ends in reality has little effects on the transport properties of an electron inside the
crystal. Turning the potential wells into square potentials is the second simplification.
One would think that such a process would seriously affect the accuracy of the theory,
but surprisingly, experimental results very closely match the Kronig-Penny model,
justifying the deviation from the actual potential.

Naturally the Kronig-Penny model starts with the Schrédinger equation, which
again for simplification reasons, will only be considered in one dimension. The
difference between that and the Free Electron Model is that the energy now also takes
into account a periodic potential, V(x) = V(x + a), so the Hamiltonian becomes:

Kk’

[11.28] H=
2m

+V(x)

F. Bloch showed that the eigenfunctions of this Hamiltonian with the restriction of a
periodic potential are of the form:

[11.29] ¥ (x)=u(x)e™

where u(x) = u(x + a). Functions with this behavior are called Bloch functions and they
satisfy the periodicity restraint by having u(x) be cyclic. Thus, the solution in region I
must be related to the solution in the region III and the solution in region II must be

related to the solution in region IV and so on. This is known as Bloch’s Theorem and can
be stated mathematically for regions II and IV:

[11.30] T(a <x<a+ b) = LI"(._b <x< O)eik(a+b)
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Because an electron could be traveling either to the right or to the left, the solution to the
Schrddinger equation for each region is a superposition of traveling waves:

27 2 . .
[11.29) R@mLE=hh: W;zAﬂ”+Be*x
m
2% k —k
RegionH,E=h2k2 +v: Y, =Ce™ + De™
m

where the constants A, B, C, D are chosen so that the wave function ¥ and its derivative
V¥’ are continuous across the potential boundaries at x =0 and x = a. Setting ¥; = ¥, and
¥, =¥, at x = 0 results in the following two equations:

[11.30] ¥ A+B=C+D
[11.31] ¥ ik;(A —B) =k,(C - D)

Similarly, setting the wave functions and their derivatives equal at x = a and using
Bloch’s Theorem to set ¥(a) = ¥(-b) will result in:

[11.32] . Ae™® 4 Be e = (Ce—kzb + De*? )eik(a+b)
[I1.33] ¥ 1k1 (Aeikla — Be_ikla) — k2 (Ce-kzb _ Dekzb )eik(a+b)

Equations [11.30] — [11.33] can be restated in matrix notation as:

1 1 -1 -1 4]
ik, — ik, -k, k, B 3
[11.34] o g _ e b gikiah) _ et | o =0
ik, ehe  _ ik, e k, o ~ab ik(ath) k, ol gk (atb) D]

So the equations have non-trivial solutions only if the determinant of the coefficients of
A, B, C, D vanishes. After expanding the determinant:

k’ -k’ :
[I1.35] coshk,bcosk,a ————2-sinh k,bsin k,a = cosk(a + b)
2k
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This dispersion relation is extremely complicated, but useful information can be gathered
from it by picking proper values for a, b, ki, and k,. The most important detail in this
result is the right hand side of the equation. Because |cos k(a +b)| is never greater than
one, the left hand side of the equation is restricted to stay within that range. Figure II.i
plots the left hand side of the equation with b =0, and the allowed range between 1.
Notice the shaded gaps in the allowed values for k;, over those ranges, [11.35] has no
traveling wave solutions and as a result the gaps in the energy spectrum are formed.
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A distinct difference can be seen in the plot of energy verses wave vector for both free
[11.j.a] and bound electrons [II.j.b]. The free electron model takes on the quadratic shape
of [11.16], while the bound electron model has gaps at +nw/a. When n = 1, the electron is
in the first Brillouin zone, when n = 2 it is in the second, and so on. The energy gaps
govern the behavior of electrons near the Fermi surface and play a crucial role in the
properties of conductors, superconductors, semiconductors, and insulators.

7 Kittel, Charles

® Cusack ,N. The Electrical and Magnetic Properties of Solids. John Wiley & Sons Inc. New York, NY
©1958
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as long as the area through which the magnetic flux is passing does not change over time.
So if the electric field is zero, then B/dt = 0, which means that the flux through the
material cannot change as it cools. This contradicts the Meissner Effect, which shows
that the magnetic induction field inside the superconductor must decrease as it is reduced
to zero. Therefore, there must be more going on inside the lattice of the material then the
electrical resistance dropping to zero. The Meissner Effect suggests that perfect
diamagnetism is also an indispensable property of the superconducting state.
Diamagnetism is a form of magnetism that is associated with the change in the
orbital magnetic moment of electrons caused by an applied magnetic field. When a
magnetic field is applied to a diamagnetic substance, the orbital motion of the electrons in
the substance is affected by the field. The changed motion is called a magnetization
current. With each magnetization current, there is an associated magnetic dipole moment
associated with it. By Faraday’s Law, the dipoles will be induced in such a way so that
they will oppose the field that induced them. The sum of all those dipoles is equal to a
quantity called the magnetization. From classical electromagnetism, the magnetic
inductance B is related to the magnetic field H and the magnetization M through:

[11.37] B = uo(H + M)

The ratio of the magnetization to the magnetic field is a dimensionless quantity x called
the magnetic susceptibility (M/H = ). For diamagnetic materials, X is a negative
quantity. For a perfect diamagnet, x = -1, which means M = -H and [I1.37] reduces to

B = 0, the result demonstrated by the Meissner Effect. When the magnetic field
surrounding the superconductor is strong enough, the magnetization drops to zero and the
magnetic field penetrates the material, destroying the superconducting state. The critical
field at which that happens is denoted by H, and its strength varies from material to
material. Some materials, called type I superconductors, experience sharp cutoffs in
magnetization while other materials, called type II superconductors experience a decrease
in magnetization after a critical field H,, is reached. They continue to decrease in
magnetization as the magnetic field is increased until a second critical field H.; where the
magnetization goes to zero. Figure IL.k shows the magnetization curves for type I and
type I superconductors. For a given critical temperature, the area under the
magnetization curve is the same for a type I superconductor as it is for a type II°.

Type 1I superconductors in an external magnetic field between H,; and H; are said to be
in a vortex state because there are pockets of matter in the normal state surrounded by
superconducting regions and the magnetization currents flow around the normal regions
like a vortex of a tornado. The magnetic field surrounding the sample will penetrate the
normal regions and creates a magnetic flux through a region near the surface of the
material. Because the magnetic field cannot penetrate all the way through the sample, a
type II superconductor will remain in a mixed “partially” superconducting state until the
second critical field is reached. Type I superconductors are generally the elements on the

? Kittel
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periodic table that are known superconductors, i.e. pure metals and transition metals,
while type II superconductors are usually alloys and compounds.

By now it should be obvious that superconductivity is closely tied to both zero
resistance and the Meissner Effect, two phenomena that are both dependent on the
behavior of electrons and hence related to the Fermi surface. Remember that the Fermi
Surface is not always at a constant level due to quantum and thermal excitations in an
atom. Electrons near the surface could absorb a photon, or be excited with the
application of heat causing the electrons to momentarily “jump” above the Fermi surface.
If the surface happens to be at the same level as a band gap, then the atom’s outermost
energy band is completely filled. In this case, an electron needs to gain a large amount of
energy to jump to the next level above the band gap. If the Fermi surface lies well inside
an energy band then electrons have no problems gaining energy, and thus have an easy
time of traveling from atom to atom. Conductors are materials that contain atoms that

Band Gap Band Gap

\

Ferm
Surface

(@) Fig. I (®)

have partially filled energy bands (Fig. Il.k.a), and the electrons near the Fermi surface
are called conduction electrons, because they are the easiest to excite and remove from
their atoms to generate a current. An insulator is a material that has its energy band
completely filled (Fig. IL.k.b), which makes it hard for electrons in such a substance to
gain enough energy to jump to the next energy level and become a conduction electron.
The superconducting state does not just involve electron-lattice interactions (that generate
the energy bands), but as a result of the electrons traveling through the lattice, involves
electron-electron interactions as well.
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as demonstrated for zinc
in Figure Il.m. Each line
on the graph represents
the transition between the
normal state and the \
superconducting state.
The heavier the isotope,
o‘n‘ : IQ.Iu 0.85 0.8 o.”‘ ‘o.“ the lower the temperature
Fig. IL.n at which the transition
occurs.

If electrons are moving through the lattice, then how do two electrons become
attracted? The new dynamic model now requires that the second electron follow the
polarization track of the first electron. That will reduce the energy of the electron
because the lattice will already be in a polarized state. There are two ways that the
electrons can follow the same path: The first is they can have the same momentum (p; =
P2), in which case we can easily consider the two electrons a single particle with a total
momentum of twice that of a single electron. The second, and more abstract option, is
that the electrons are traveling along the same path, but they have opposite momentum
(p1 = -p2), and can be considered a single pair with a total momentum of zero. Again, the
Pauli Exclusion Principle plays a crucial role by not allowing two electrons to have the
same momentum and excluding the first case for electron propagation throughout the
lattice. It also turns out that it is energetically favorable for the electrons to have
opposing spins. An electron pair with opposite momentum and opposite spin is called a
Cooper pair, because it was Cooper who first discovered that such a pairing of electrons
would lead to a reduction in energy of the pair. Fermions are particles with half integer
spins, a classification that electrons fall into because they can have a spin of 5.
Treating a Cooper pair as a single particle, its spin can be determined by summing the
spins of its constituent particles. Thus, a Cooper pair made up of two electrons with spin
+Y2 and - respectively will have a spin of zero. Particles with integer numbers of spin
are called Bosons, so obviously, a Cooper pair is a Boson. Bosons do not obey Fermi-
Dirac Statistics, and thus do not have to obey the Pauli Exclusion Principle. Thus, every
Cooper pair in the lattice can have the same momentum, which due to the opposite
momentum of the electrons in the pair, is zero in the ground state. However, if a
potential difference is applied across the lattice, then every Cooper pair in the lattice is
accelerated and they all gain momentum.

Obviously, a particle with momentum p and energy p°/2m can enter into
collisions with the lattice. After such a collision with the lattice the particle has lost
momentum ¢ and energy ¢*/2m. Then the momentum of the particle is changed to p — ¢
and its energy to (p — ¢)°/2m. The energy of the whole lattice-particle system needs to be
conserved so:
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[1T.38] r _(p—9q)
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= Energy lost to the lattice
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1 Geballe, T. H. & Matthias, B. T. (1962) Isotope Effects In Low Temperature Superconductors. JBM
Journal of Research and Development. Volume 6(2). 256 —257.
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The dispersion relation w = kv, helps to quantitatively determine the lost energy.
When a particle hits the lattice, it sets up a vibrational wave that travels through the
lattice. In quantum mechanics, particles can be described as waves and vice versa. The
particle counterpart to a vibrational wave in a lattice is called a phonon. When the
particle hits the lattice the phonon is released with energy hw, where w is the angular
frequency of the vibrational wave. The dispersion relation connects the angular
frequency to the wave’s speed of propagation through a material, which in this case is the
speed of sound in the material. Thus, the energy of the phonon is hkv,, where k is the
wave number of the wave. The momentum of the phonon is equal to the momentum lost
to the particle so that ¢ = hk. The energy of the phonon can now be written as E = v,q,
and [I1.38] becomes:

2 2
p. (r—9

11.39 £ _WwW=4 _,
[ ] 2m 2m »d
this can be reduced to:

P q

11.40 V"=V, +——

[ ] m ° 2m

Because the electron Joses momentum to the lattice, q is a positive quantity, so according
to [11.40] v > v,,.. The particle will only lose energy to the lattice if the speed of the
particle is greater than the speed of propagation of a phonon in the lattice. Sound waves
are vibrational waves, so it is correct to say that if the velocity of the particle is less then
the speed of sound in the material, then the particle will not interact with the lattice. That
could be stated quantum mechanically by saying that the particle does not have enough
energy to interact with the lattice and give up a “packet” of energy. Suppose that the
particle is an electron. If the electron is traveling below the speed of sound in the lattice,
then it will conduct without colliding with the cores of the lattice. Unfortunately, only
about 0.000001% of electrons in the normal state actually travel with velocities that low''
because the electrons cannot all have the same momentum, resulting in a measurable
resistance. In the superconducting state, Cooper pairs can hold the same momentum, and
in fact, they all have the same momentum. As long as their velocities remain below the
speed of sound of the lattice, the pairs will travel unhindered through the crystal and a
resistanceless current ensues.

Before the Cooper pairs form within the lattice, the material is not in the
superconducting state. As the material is cooled, the Cooper pairs begin to form and
because they are bosons, they all fill one energy state, which in the absence of an electric
field will be the lowest possible state. This “condensation” of the Cooper pairs leaves an
energy gap, the magnitude of which is equal to twice the energy difference between the
superconducting ground state and the normal Fermi surface. If that energy difference is
A, then the energy gap has a magnitude of 2A. Electrons and Cooper pairs cannot occupy
the energy gap, so the energy required to excite the system is also 2A. The size of the
energy gap will decrease as the superconductor warms, so that when it is at the critical
temperature, A = 0. It also has a limiting size, which is when the superconductor is at
absolute zero. In that case, all of the Cooper pairs will have condensed into the lowest

' Taylor, A. W. B. Superconductivity. Wykeham Publications. London England. 1970. Pg 81.
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possible ground state, leaving the largest possible energy difference between the ground
state and the Fermi surface of the normal state.

The energy gap can be measured experimentally measuring the absorption of
photons by the material. If the superconductor is formed into a cavity, and photons are
directed into the cavity, as long as the energy of the photons, hv <2A, then the Cooper
pairs will not absorb them, and they will be deflected. When the photons have enough
energy, the Cooper pairs will absorb them and be excited above the energy gap, resulting
in a decrease in the number of reflected photons.

If the Cooper pairs are brought above the energy gap, then they have enough
energy to break the “bonds” that form the pair. Placing a potential difference across the
superconductor will increase the energy of all the Cooper pairs. As the current increases,
so does the velocity of the Cooper pairs, and when a threshold velocity is reached, the
pairs have enough energy to overcome the energy gap and break apart into individual
electrons, destroying the superconducting state. The critical current has been explained!
It turns out that the energy required to break the Cooper pairs is on the order of 10* less
than the energy required for the pair to reach the speed of sound in any lattice, so that the
Cooper pairs will always satisfy the requirement that v < v,,

The Meissner effect can also be explained by Cooper pairs. Remember that when
a static magnetic field is applied to a diamagnetic material, the freely moving electrons
are forced to move in such a way that the magnetic field they produce is opposed to the
applied magnetic field. One would think that the magnetic moments of all the electrons
would add together to form a strong magnetic opposing the applied field. However, the
Pauli exclusion principle forbids the electrons to have the same momentum, and the
overall effect is weakened because the magnetic moments of the electrons are not aligned
in the same direction. In the superconducting state, the Cooper pairs (in the absence of
any electric currents) all have a net momentum of zero. When the magnetic field is
applied, the Cooper pairs are all forced to move in the same direction and their magnetic
moments all line up exactly with one another. The result is perfect diamagnetism
exhibited by the Meissner effect. The energy from the applied field is imparted to the
Cooper pairs, however if that energy is great enough, then the “bonds” that hold the pairs
together will be broken. In other words, a critical field breaks the Cooper pairs apart,
resulting in resistance causing electrons and a reversion into the normal state.

Another way of supplying energy to Cooper pairs to break them apart is through
heat. Thermally exciting the pairs will eventually cause them to break apart once a
particular temperature is reached. In other words, the critical temperature of the
superconductor is dependent on the energy it takes to form the Cooper pairs inside the
lattice.

BCS theory of superconductivity as described above predicts many interesting
phenomena and has been verified by experimental facts, but it still fails to fully explain
the behavior of type II superconductors. BCS theory can be used as a reasonable
approximation, but the actual details of the physics of type II materials are still being
worked out. However, BCS theory covers a significantly broad range of topics and
describes enough physical results to understand the processes and procedures involved in
the construction of a device that measures critical temperatures of homemade
superconductors made.
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Thermocouple

The thermocouple used in the experiment was an Omega Engineering copper-
constantan fine wire thermocouple. It was made out of copper and constantan, two
metals with different thermal properties. When the metals change temperature, they
expand, and a potential difference is set up across the junction between them. The
experiment requires two such junctions. One kept at a reference temperature, so it was
possible to determine the temperature of the second junction by measuring the voltage
generated in the thermocouple. After soldering the constantan parts of two junctions
together, the copper leads were tied to banana plugs. Banana plug wires then connected
the thermocouple to a Keithley 177 Microvolt Digital Multimeter that was set to display
the voltage in the thermocouple at the 20mV setting. The Keithley DMM also had a
built-in amplifier with a 100V gain, the output of which was fed through banana plugs
into the Pasco 500 so Data Studio could collect the data coming from the thermocouple.
The reference junction was sealed in a test tube filled with mercury to ensure good
thermal contact of the junction. The test tube was then placed in an ice bath so the
reference temperature could be maintained constant at 273 K, the freezing point of water.
The other junction was taped to the sample that was being tested in the experiment. To
zero the thermocouple, both junctions were placed in mercury-filled test tubes and the
tubes were placed in ice water. A voltage could be read using the Keithley DMM, which
was then zeroed so that a temperature at the sample junction of 273 K would correspond
to a reading on the DMM of OV. A calibration curve for the thermocouple was used to
convert the voltages into temperatures was obtained from Omega Engineering and has
been included in Appendix C.

Disks
There were six disks that were studied in using the critical temperature
measurement device, each was assigned a label from 1 — 6. The first three disks were
produced by Colorado Superconductors, a science supply company that specializes in
making superconducting disks. It is believed that those disks were made out of
Bi,Sr,CaCu,;Q9. Disks 4 — 6 were produced from YBa,Cu30; kits!? by students enrolled
in Lycoming College’s Modern Physics course.

2 Colorado Superconductor Inc. Instruction Manual for Superconductor Demonstrations.
Fort Collins, Colorado. ©1987
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The Experiment

The secondary solenoid sits as close to the center of the primary solenoid as
possible. The signal generator in the detector generates an alternating current that passes
through the primary solenoid, and sets up an oscillating magnetic field inside the primary.
The time-varying magnetic field then induces alternating currents in the secondary coils,
which are fed into the preamplifier in the SPLIA1-A. The signal from the reference coil
is inverted by the preamplifier, and then mixed with the signal from the experiment coil.
When the experiment coil has no samples in it, its signal will be the same as in the
reference coil and the two signals will cancel with one another when mixed by the
preamplifier. However, if a magnetic material is placed in the experiment coil, then the
magnetic field inside that coil will be distorted. The distortion of the magnetic field
induces another current in the experiment coil that adds to the one already in it, and there
is a difference between the signals generated in the secondary solenoid coils. Thus, when
the preamplifier mixes those two signals, there will be a resulting overall AC signal. The
combined signal is sent to the amplitude detector where it is negatively rectified,
amplified, and then passed on to the low-pass filter/amplifier. The low-pass filter
averages the rectified signal, turning it into a DC voltage, and a built in amplifier will
step up the voltage so that the Pasco 500 can read it. The purpose behind rectifying the
signal is now apparent; if the signal were a plain AC signal, the low-pass filter would
always average it to zero. Now the only way for the Pasco 500 to read a zero DC voltage
is if the signals that pass into the preamplifier are the same.

When a superconductor is cooled below its critical temperature, it acts as if it
were a perfect diamagnet. Thus, when a superconductor is in the superconducting state,
the Meissner effect distorts magnetic fields. That fact allows the detection of the
transition between the superconducting state and the normal state. When cooled with
liquid nitrogen, the superconductor will distort the magnetic field inside the experiment
coil, and a new current will be induced in that coil. The difference will ultimately mean a
negative, nonzero DC output from the low-pass filter/amplifier.

As the superconductor warms, it will pass through its transition temperature. The
signals between the experiment and reference coils will again become the same, and the
DC output will go to zero. It is easy to determine the critical temperature of the
superconductor by measuring the temperature of the superconductor and the DC output
from the low-pass filter/amplifier as functions of time. The transition is obviously not an
instant drop in the DC voltage to zero, because the outside of the superconductor passes
the critical temperature before the inside, thus there is a period of time over which the
signal decay occurs. If the shape of the sample were spherical, then the transition would
be linear because the sphere would heat up at the same rate in all directions. Disk shaped
samples lose heat faster from the top surfaces and slower at the edges, resulting in an
almost linear transition that is curved at the beginning and the end.

In this work, the critical temperature is the considered to be the temperature at the
midpoint of the transition. The time that corresponds to the midpoint of the DC signal
voltage also corresponds to a voltage output from the thermocouple. Thus, the
calibration curve can convert the thermocouple output into a temperature to resolve the
critical temperature of the material.

28



CTION 1V: Results

The next section contains data taken for two of the six disks that were tested. Not
of the data was included because the disks that were chosen demonstrated behavior
icative of the rest of the disks. Disk 1 is representative of the disks composed of
Sr,CaCu, Oy (disks 1 — 3). Disk 4 is representative of the YBa,Cu3O7 disks (4 —- 6).
ch set of data consisted of five different data runs, and each run has two graphs
ociated with it. The first graph is a plot of the whole data run and is labeled with
otal” in the title. This plot allowed the time period over which the transition occurred
be determined and is marked by two horizontal lines on each total run graph. The
ond graph for each run is a magnification of the time period determined from the first
ph. The critical temperature was determined from the second graph by averaging the
nal before and after the transition and calculating the midpoint of the two averages.

e temperature of the thermocouple at the midpoint signal was taken to be the critical
1perature of the device. In instances where there were multiple values of the signal
tage at the midpoint and different corresponding temperatures, the median of the
perature range was taken to be the critical temperature. Data for disk 1 can be found
pages 30 — 39. There were two sets of data for Disk 4, labeled 4 and 4b, these can be
ind on pages 40 — 63. Two plots of the signal noise of the device can be found on

ses 64 — 67, one plot of the noise for 1500s and another plot of the noise vs.

nperature of the inside of the solenoid. The last two graphs of this section are plots of
a taken using Lycoming College’s four-point probe method for comparison with

ults from the critical temperature measurement device.
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SECTION V: Conclusions
Due to the large volume of data collected for each disk, only two sets of data were

presented in this paper. Below is a chart of the critical temperatures derived from each of
the graphs generated for each disk.

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6

Run 1 120 122.3 110 95 NT 126
Run 1b X X 118.9 1255 132 X
Run 2 116.7 115.7 109 107.5 115.3 118.7
Run 2b X X 116.5 106.5 131.3 X
Run 3 113.3 116.7 109.5 104 113 107.5
Run 3b X X 110 107.25 127.7 X
Run 4 111 115.3 107.5 108.5 112 105
Run 4b X X 113 100.3 1233 X
Run 5 111 114.7 107.5 86.7 113 88.3
Run 5b X X 116.6 100.3 125.5

Run 6 X X X NT X X
Run 6b X X X 97.5 X X

Average 1144 11694 111.85 10355 121.4556  109.1
Standard
Deviation 3.904485 3.083504 4.130443 9.794156 8.19407 14.40295
NT — No detectable transition
x — No data set
Fig.IV.a

Notice the wide range of average critical temperatures for each run. At first
glance that would seem to indicate that there is something fundamentally wrong with the
device, but further inspection proves otherwise. Disks 1 — 3 and disks 4 — 6 actually have
significant differences between them. The major difference is that Colorado
Superconductors produced disks 1 — 3, while students in the Modern Physics lab at
Lycoming College produced disks 4 — 6. The disks manufactured by Colorado
Superconductors had been stored in the lab for many years, without any markings to
indicate what they are made of. At first, it was believed that they were actually
composed of YBa,Cu3;07, which has a critical temperature of about 92 K. Obviously, the
temperatures calculated for disks 1 — 3 are much higher than that, but there is another
superconducting material, Bi,Sr,CaCu,0, that has a critical temperature of 110 K. Disks
made out of the bismuth-based superconductor are available from Colorado
Superconductors, and the Physics Department did purchase such disks in conjunction
with the yttrium based ones. In the event that disks 1 — 3 were made out of
Bi,Sr,CaCu, 0y, then the corresponding error associated with the device for each disk is
4% for disk 1, 6.3% for disk 2, and 1.7% for disk 3. Unfortunately, disks 4 — 6, the ones
made by Lycoming students, yielded quite different results. Those disks are made from a
homemade superconductor kit that allows a student to make an YBa,;Cu30O; disk, so there
s no question as to the composition of disks 4 — 6. Howeyver, the calculated error for
each disk is: 12.6% for disk 4, 32% for disk 5, and 18.6% for disk 6. By looking at both
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he total run and transition graphs for each of those disks, it is easy to see why such
erroneous and unfocused determinations of the critical temperature were calculated.

Many of the data runs do not have very definable transition periods as in the case
of disk 4 runs 3b and 4b. The choice of transition periods in both those data sets was
vased on the apparent leveling-off of the graph towards the beginning and end of the
periods. The apparent leveling could also just be noise inherent in the system, and the
ransitions in that case would be undetectable. All of the data taken for disk 4 that are not
abeled “b” exemplify another problem in detecting the transition. Although in runs 1 —
5, it appears that there are transitions, those transitions occur either right before or right
after a dramatic change in the signal. The behavior was investigated by taking two sets
>f data with no superconductor in the Experiment Coil. Instead, the coil was filled with
iquid nitrogen and the signal from the device was measured over time. The three graphs
pg. 64 — 66) depicting the signal noise over a 25-minute time span show that there are
ndeed dips and rises within the noise generated by the device. A fourth graph (pg. 67)
shows the second set of data that measures both the temperature inside the Experimental
Coil and the signal generated by the device over a 650-second time period. The noise
sraphs reveal more evidence that the signal for the yttrium based disks might have been
0o small to be detected over the noise from the device.

A possible, but unlikely source of noise in the system could originate in the
Reference Coil. During construction, the wire broke apart at the bottom of the first set of
windings. It was promptly soldered back into place and protected extensively with gloss
pel. While an extremely small joint, it could very easily distort the signal in the
Reference Coil, which means that the Reference and Experiment Coils will never fully
cancel one another when mixed in the preamplifier. That is not a big concern, since all
hat really matters is the sudden drop in the signal. However, there is a small possibility
hat the observed noise characteristics of the device could have something to do with the
repaired joint.

It should be noted that all disks demonstrated the Meissner effect by floating a
magnet before they were tested in the device, so the possibility of the disks not being in
he superconducting state while data was taken can be ruled out. However, student made
disks do have a tendency to not be fully superconducting throughout the entire disk.
Thus, if a portion of the inside of such disks was the only part that had the ability to
conduct without resistance, then the thermocouple on the outside surface of the disk
would read a different temperature than the temperature of the superconducting part. The
lemperature would in fact be warmer then the temperature of the part in the
superconducting state, which has been observed with the device. The temperature
difference would probably not be as great as was measured, but it could still account for a
few degrees of the disparity.

The construction method employed for making the ceramic disks could also be
another source of disparity between different disks. It makes sense that the disks
produced by Colorado Superconductors would all have about the same critical
lemperature, because their construction method was precisely controlled and easily
repeatable. The construction method for the student made disks is not a constant
repeatable process. To make such disks, students are required to subject a mix of yttrium,
barium, and copper oxide to intense heat and ground into a fine powder before pressing
the material into a disk. The purpose of the heating is to diffuse enough into the mixture
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to achieve the desired crystal structure for a superconductor. However, the desired
structure is not necessarily YBa,Cu30;. The chemical equation does not need to be
stoichiometric, generally as long as there is more then six oxygen atoms in the structure
then it will be superconducting at low enough temperatures. Different grinding, heating
and pressing methods will lead to differences in the amount of oxygen in the crystal
structure of each disk. Thus each yttrium based disk could potentially have a different
critical temperature associated with it. The differences observed between disks 4 — 6
could be explained by the slightly different construction methods of students.

To round out the study, an experiment using the Modern Physics lab’s current
method of measuring critical temperatures was carried out. The current method entails
using disks that already have wires for measuring resistance built into them. The results
from the mini investigation can be found on pages 68 — 69, titled “Resistance Vs.
Temperature” with the compound name attached. Both YBa,Cu30; and Bi,Sr,CaCu,09
were studied, with results comparable to, if not worse than the results from the non-
intrusive device. A critical temperature of 77.6 K for YBa,Cu307 and a critical
temperature of 97.6 K for Bi,Sr,CaCu,0Oy were measured by the four-point probe. The
error in this case could be due to an uncalibrated thermocouple, or a non-zeroed digital
Multimeter. There were no procedures in the Modern Physics lab manual for calibrating
the thermocouple, or zeroing the DMM, so no calibrations were carried out. However,
the temperature data from the experiment is indicative of a correctly working
thermocouple, since the data begins at 77 K, the boiling point of liquid nitrogen. The
DMM also appeared to be reading correct values at the start of the experiment, but
because no calibrations of these devices were carried out, it is impossible to state that
they are not a source of error. In any case, the one set of data from the four-point probe is
not enough to substantiate any claims that the new device is a more accurate means of
measuring the critical temperature of superconductors. The new device does have one
advantage over the four-point probe; it allows students the opportunity to study the
properties of the superconductors they make, provided its noise characteristics can be
worked out.

Upon completion of the investigations, there have been some breakthroughs and
some disappointments. The device did detect transitions in superconducting disks, but
how accurately it actually measures the critical temperature is still undetermined. More
studies on the noise of the signal need to be done to resolve what could be causing such
noise, and whether or not it is possible to isolate and remove the noise from the data. A
resonance within the system that is set up by the frequency of the original signal
generated by the function generator in the SPLIA1-A should be the first theory to be
tested concerning the noise of the system. Such a signal would repeat over time, which
was observed in the signal noise graphs as successive dips in the signal voltage.

However, the dips do not occur in a periodic form, as a resonance is most likely to
do. The change in resistivity of the copper wiring as the temperature increases could
have an effect on the periodic nature of the signal. An in depth study of the baseline
output of the device should be conducted for all possible frequencies and amplitudes of
the signal generator. Some possible research topics that could be covered are: the noise
as a function of the temperature inside the device, noise due to differences in temperature
of different parts of the system, and electronic interference from the surrounding
environment. Such an investigation could probably be conducted in a semester long
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research topics or independent study course by a future interested student. This
investigation could lead to two other projects that future students could study.

The first would be to use the device to study the transition between diamagnetism
and paramagnetism in magnetic materials. Because the device essentially measures the
Meissner effect, which is really diamagnetism, it is well suited for such studies, provided
they are done at low (liquid nitrogen) temperatures.

Another study could be conducted on the feasibility of using the Physics
Department’s electromagnet to measure the critical fields of superconductors made in the
Modern Physics lab. Critical temperatures and fields are two of the most important
properties that physicists measure in superconductors, adding a component on critical
fields would greatly increase the ability for students to learn about and appreciate the
physics of superconductors.

A direct consequence of this investigation has been the development of two lab
experiments for use in the Modern Physics course at Lycoming College: a lab on the
Franck-Hertz Experiment (Appendix A) to demonstrate the physics of quantum
mechanics, and a lab on determining the critical temperature of laboratory made
superconductors using a non-intrusive method (Appendix B). Hopefully those
experiments will bolster the inquisitive nature of future students and instill in them a
sense of wonder at how amazing the world around them can be.
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Franck — Hertz Experiment

INTRODUCTION:

In October 1900 the physicist Max Planck suggested that when an oscillator emits
radiant energy, it does so in the form of electromagnetic waves and only in discrete
amounts, which he called quanta. This new theory led to what is now called Quantum
Mechanics, and, would throw the world of classical physics into such upheaval, that even
Planck himself was uncomfortable with his own idea. Many scientists did not take
Planck’s work seriously until 1905 when Albert Einstein used Planck’s theory to explain
the photoelectric effect. After that, the floodgates were open and many other phenomena
were explained using quantum mechanics. James Franck and Gustav Hertz conducted
one such experiment in 1914 which history has appropriately named: The Franck — Hertz
Experiment.

In their investigation, electrons were accelerated by a voltage toward a positively
charged grid in a glass tube filled with mercury vapor. By adjusting the potential between
the cathode and the positively charged grid, Franck and Hertz were able to increase the
energy of the electrons. Past the grid was a collection plate held at a small negative
voltage with respect to the grid. The electrons would then be accelerated through the grid
where they would subsequently collide with mercury atoms in the tube. After the
collision the electrons would be attracted to the positively charged collection plate,
however, if the energy left in an electron after a collision was too small, the slightly more
positive grid would attract the electrons back away from the collector plate.

Collecting plate is slightly

negative with respect to
the grid so that only those

--------------------- electrons above an energy

Positively charged grid
—_— accelerates electrons

e e L L L L Ty threshold will reach it.

Heated cathode BRI SRR, /ol 0

produces electrons | Tl el el Tl

Current from collector
measured as a function
of accelerating

voltage.

Since the mercury atoms could theoretically only hold quantized amounts of
energy, the electrons would only transfer specific energies to the mercury atoms. Thus, if
the energy of an accelerated electron were the same as the excitation energy of a mercury
atom, then virtually all of the electron’s energy would be transferred to the mercury
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(assuming completely elastic collisions). That would not leave enough energy for the

electron to reach the collector and it would be attracted back to the grid. As aresult, the
current registered by the collector plate would drop at specific intervals corresponding to

the excitation states of the mercury atoms. When Franck and Hertz plotted the
accelerating potential versus the current from the collection plate their data showed
exactly that, helping to further validate Planck’s revolutionary hypothesis.

OPERATION:

Franck-Hertz Data

These instructions are adapted from the instruction manual for the Pacific Science
Supplies’ Franck — Hertz Apparatus Model P67103 that is used in this experiment. The

device uses an argon tube instead of mercury in order to eliminate heating of the tube,

which reduces the time over which the experiment needs to be performed in. Data can be

taken manually or directed to an oscilloscope or a computer for display.

The controls on the panel of the device are shown in Fig. 1.
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Rheometer

Voltmeter
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Scan knob

Filament Voltage selector
Current Multiple selector
Voltage Stepper
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1.3 ~ 5V adjust knob (Ug2A)
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15.
16.
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0 ~ 100V adjust knob
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Power switch
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Ground

X-output terminal
Power wire

Observe hole
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1)
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3)

4)

5)

6)

7

8)

9)
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C vak

~

Calk

Switch on the power. The indicator will flash.

Turn the “Manual — Auto” switch to “Manual”, rotate the scan knob counter —
clockwise until it stops, and turn “Filament Voltage Selector to 3.5V, “Current
Multiple” selector to 107

Turn the “Voltage Stepper” to 1.3 ~ 5V, and rotate 1.3 ~ 5V adjust knob until the
voltmeter reads 1.5V. This sets Ugix = 1.5V.

Turn the “Voltage Stepper” to 1.3 ~ 15V and rotate 1.3 ~ 15V adjust knob until
the voltmeter reads 7.5V. This sets Usa = 7.5V (rejecting voltage).

Turn the “Voltage Stepper” to 0 ~ 100V, and rotate 0 ~ 100V adjust knob until the
voltmeter reads 7.5V. This sets Ugox = 7.5V (accelerating voltage).

When you have finished steps 2 — 5, with Uy = 3.5V (filament voltage), Ugix =
1.5V (voltage between the second grid and the collector anode) you are ready to
do the experiment. These are the suggested voltages for the experiment; you can
also do the experiment using the parameters marked on the argon tube.

If the Franck — Hertz tube is not in the apparatus, remove the cover of the
instrument and place the tube in the lamp socket. Replace the cover and turn on
the power. The indicator will flash.

Preheat the tube for 3 minutes before the experiment.

Rotate the 0 ~ 100V adjust knob while observing the variation in the ammeter and
voltmeter readings. With the increase of Ugk (accelerating voltage), the
ammeter’s reading appears to peak and vary periodically. Record the
corresponding voltage and current.

For using an oscilloscope or computer in this experiment, turn the “Manual —
Auto” switch to “Auto”, and connect the instrument’s Y, ground, and X socket to
the Y, ground, and X socket of an oscilloscope or computer. If using an
oscilloscope, switch the scanning range of it to “external X”. Switch on the
power of the oscilloscope and adjust the Y and X shift to make the scan baseline
on the bottom of the screen, and adjust the X gain to make the scan baseline 10
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1)

2)

3)

grids. Rotate the scanning knob of the oscilloscope and observe the waveform on
its screen. Adjust the “Y gain” and “X gain” of the oscilloscope’s attenuation to
make the waveform clear and Y amplitude moderate. Rotate scanning
potentiometer clockwise to end, set the scan voltage to 50V, and measure the
horizontal distance of two consecutive crests (count the grids). Multiply the
distance by 5V/grid to obtain the value of an argon atom’s first excitation
potential.

Caution

During the experiment, pay attention to the output current indicator when the
voltage is over 60V. If the Ammeter’s reading increases suddenly, decrease the
voltage at once to avoid damage to the tube.

If you want to change the value of Ugk, Ugza, and Uy during the experiment,
rotate the 0 ~ 100V adjust knob counter — clockwise to end, before making the
changes.

The filament voltage of this instrument is 3V, 3.5V, 4V, 4.5V, 5V, 5.5V, and
6.3V. You can do the experiment with these filament voltages. If the waveform
is skewed (that means the anode output current is too strong and causes the
amplifier to distort), the filament voltage should be decreased.

Specifications

1. Voltage supplicd to Franck- llenz tube.
Ugix 1.3~5V
Ugza (rejecting voltage) 1.3 ~15V
Ugax point- measure observe 0~ 100V
Sawtooth wave on ascilloscope 0~ 50V
Uy (filament voltage) AC:3V,3.5V,4V, 4.5V,
SV, 5.5V, 6.3V.

2. Parameter about sawtooth wave.
Scanning Voltage 0~50V
Scanning Frequency 115+ 20Hz
Voltage amplitude of scanning output L1V

3. Low-current Measuring range
10~ 10 A(4 steps)
4. Observable numbers of spectrum amplitude
Point — measuring 25
Observe on universal oscilloscope 22

5. Operating condition

Ambient temperature -10~40°C

Relative humidity <85%(40°C)

Operating power AC 220V 22V, 50H,
Preheating time <5 min

Continuous operating time 8 hours

Rated input power <I5W .
Dimensions 1 X b X hyyp: 400 X 230 X 130
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APPENDIX B:
Measuring Critical Temperatures of High
Temperature Superconductors
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Measuring the Critical Temperature of
High Temperature Superconductors

INTRODUCTION:

In 1911, Heike Kamerlingh Onnes began experiments to test the electrical
properties of various metals at low temperatures using liquid helium (~ 4 K). It was his
hypothesis that in a lower state of energy, there would be less resistance to the flow of
electricity in metals. Onnes had expected to find resistance drop exponentially with
temperature and then eventually level off to a limiting resistance that would never be able
to be overcome. He observed that indeed resistance dropped as a function of temperature
but he also observed something unexpected and astonishing. To Onnes’ surprise, he
found that around 4 K mercury completely lost all resistance as did various other metals.
He even formed a ring out of mercury, submerged it in liquid helium, and passed a
current through it. Onnes then allowed it to sit like that, while making sure there was
always plenty of coolant around the mercury. After a year, he measured the current in the
ring and found that it had persisted virtually undiminished! Often scientists will talk
about physical phenomena approaching zero, or being negligible, but very rarely do they
find something as remarkable as Onnes had. Onnes termed his new discovery
superconductivity and described the temperature at which a superconductor lost
resistivity as the critical temperature (T;). The scientific community realized the
importance of Onnes’ discovery and quickly rushed to find materials with higher critical
temperatures. Liquid helium is relatively expensive to produce so the prospect of finding
a commercially viable superconductor that had a higher T, was very lucrative.

All the known metals were subjected to test after test and when they were
exhausted, combinations of different metals were tested to see if any would yield
significant results. Unfortunately, progress towards raising the critical temperature
stalled for 60 years before IBM researchers Alex Miiller and Georg Bednorz had
constructed a ceramic superconductor with a critical temperature of 30 K. Soon after, in
1987, Paul Chu and a research team at the University of Houston reported developing a
material that would become superconducting at 98 K, which could be cooled using liquid
nitrogen, a safer and more readily available cryogen. With the development of these new
“high temperature” superconductors, the field of solid-state physics was rejuvenated with
the hope of inventing materials that would become superconducting at room
temperatures.

Setup:

The apparatus used for measuring the critical temperatures of superconducting
pellets (most likely made out of YBa;Cu30;) has many different parts associated with it.
One should become familiar with the names and the procedures of each device, especially
the SPLIA1-A and the Data Studio computer program.
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experiment signal. Thus a signal can be passed on to the amplitude detector and a
voltage registered by the Pasco 500. Because the amplitude detector rectifies signals
negatively, the registered DC voltage will be negative. A thermocouple connected to the
superconducting disk will be outputting voltages to a digital Multimeter (DMM) while
the device outputs a signal voltage. Both voltages are fed into Data Studio, which
records them simultaneously. The simultaneous recording of the two signals is the key
for determining the critical temperature of the disk.

Procedure:

1) Connect the thermocouple to the DMM and the DMM to the Pasco 500 with
banana plugs. Make sure the DMM is set to (GET THIS SETTING).

2) Calibrate the thermocouple by placing both junctions in test tubes filled with
mercury, and then placing the test tubes ice baths. Allow the voltage on the
(DMM) to reach an equilibrium, then adjust the zero knob on the DMM until it
reads zero.

3) Remove the upper junction from its ice bath and test tube. Carefully return all
mercury from the test tube to its original container.

4) Zero the oscilloscope.

5) Set the gain on the preamplifier to SOV. Then set the gain on both the amplitude
detector and low-pass filter/amplifier to 2V. Also on the low-pass filter/amplifier
are the time constant and the dB/oct switch. These should be set to 0.1 and 12
respectively.

6) Use the DC-offset on the low-pass filter/amplifier to zero any signal in the device.
The oscilloscope or the dial on the filter/amplifier are useful for doing this.

7) Secure the free junction on the thermocouple to the disk that is to be studied.
Place the disk inside the experiment coil so that it lays flat on the styrofoam base.
A plastic rod can be used to press the disk flat.

8) Set up Data Studio to take data: make sure that both volt sources are connected
and register as active. Set the sample time to be 0.1s. Bring up the “Graph”
option for the best interpretation of the data.

9) Add liquid nitrogen to the secondary so that it completely covers the disk.

10) When most of the nitrogen has boiled away, click the start button in Data Studio
to begin taking data.

11) When the signal voltage shows the transition, allow the experiment to run for
around 30 more seconds. If there is no discernable transition, wait until the
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thermocouple voltage reads at least -0.425 V ~ 140 K before stopping the run.
This is because the critical temperature will never be that high for YBa,Cu3;0; or
Bile‘zC&Clleg.

12) Click the stop button to stop taking data.

13) Use the “Table” feature to cut and paste data from Data Studio into Microsoft
Excel for analysis.

14) The critical temperature can be determined by finding the time at the middle of
the transition. That time will have a corresponding voltage from the
thermocouple. Use the calibration curve for the thermocouple on the next page to
find the critical temperature.

15) Perform as many runs as deemed necessary. In general, the more runs, the more
accurate the determined critical temperature will be.

*For more details on the physics of superconductors and how the T, measuring device
works see: An Experimental Investigation of High Temperature Superconductors by
Robert Benoit, a copy can be found in the Snowden Library
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APPENDIX C:
Calibration Curve for Copper-
Constantan Thermocouple
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