NOTICE:

The copyright law of the United States (Title 17, United States Code) governs the making of
reproductions of copyrighted material. One specified condition is that the reproduction is not to
be "used for any purpose other than private study, scholarship, or research." If a user makes a
request for, or later uses a reproduction for purposes in excess of "fair use," that user may be
liable for copyright infringement.

RESTRICTIONS:
This student work may be read, quoted from, cited, and reproduced for purposes of research. It
may not be published in full except by permission of the author.

Interactive Environments: The Design and Implementation of a
Terrain Simulator and Development Toolkit

Presented to the faculty of Lycoming College in partial fulfillment
Of the requirements for Departmental Honors in
Computer Science

By
Jason M. Black
Lycoming College
April 27" 2005

Approved by:

b] C2lesa—

(Dr. Eileen M. Peluso)
2

(Dr. Santhusht S. deSilva)

Bavd L) Gk

il 2

(Datid Heffner, Associaté Dean of
Information Technology)

This project is dedicated to my parents, for supporting me in everything that | do.

Acknowledgements v

Acknowledgements

A project of this size, whether it is created to have widespread use in the corporate world
or created to be used by a few in academia, takes an enormous amount of planning,
effort, and perseverance. No matter how dedicated an individual is to their work, their
efforts will almost always grind to a halt without the support of other individuals. I had
the support of many such individuals on this project, and I would like to thank them for
their contributions.

First of all, I would like to thank Dr. Eileen Peluso for advising me for the year and a half
from this project’s conception to its conclusion. Whether it was the weekly reviews,
getting me in touch with the right contacts for help, or the unscheduled emergency
meetings, she was always there for me. I would never have been able to do this if you
hadn’t reined me in when I was overly zealous in my plans and supported me when I was
experiencing a slump.

I would also like to thank my friend Jeremy Lothian for many late evenings of discussion
on my project’s contents. He practically taught me how to use XML, and saved me
countless hours with his wisdom and insight.

I am thankful for the encouragement and motivation given to me by someone who is dear
to me, Nicole Gugliucci. She has been a great muse.

This list would not be complete without expressing thanks to my parents, Clair and Karen
Black, who have supported and believed in everything that I have done and hope to do.

Finally, I would like to give a thankful nod to the people at Microsoft, Google and
APQOD. I am thankful to Microsoft for a well documented graphics API (DirectX), an
easy to use programming language (VB.NET), and a superb development environment
(Visual Studio). As many others have been before me, I am thankful to Google for
providing an efficient search technology that saved me in times of need and confusion.
The pictures used in the Table of Contents and in the Introduction are courtesy of APOD
(http://antwrp.gsfc.nasa.gov/apod/), and I thank them for their wonderful service.

About the Author

Jason Moses Black is an undergraduate senior at Lycoming College in Williamsport,
Pennsylvania, where he is pursuing a Bachelor of Science degree in Computer Science.
Jason intends to pursue a career in simulation design, either for serious uses by the
government and the medical community, or for recreational and educational uses through
the video game development industry. During his summers Jason has researched artificial
intelligence at the University of Oklahoma and he intends to focus on this discipline in
his future endeavors.

Interactive Environments: The Desigh and Implementation of a Terrain
Simulator and Development Toolkit

|
|

Section 1 - Original Honors Project Proposal 3

Section 1

'!
|
|
|
’
|
|
Original Honors Project Proposal [

Section 1 - Original Honors Project Proposal

4

Section 1 - Original Honors Project Proposal 5

Software Engineering of a Graphical Engine
Honors Project Proposal - Jason M. Black

Project Summary
The design and development of graphical applications, such as environmental
simulations, games, and interactive training programs are active areas of research in the
field of Computer Science. In this Honors Project, I will design and develop an
Integrated Development Environment (IDE) that will support libraries of graphical
objects that can be integrated into complex 3D scenes through which the user will be able
to navigate. With this final product, users will be able to take individual objects created
by existing image-creation applications and combine them, resulting in a virtual world

simulation in which the user becomes a participant.

Project Qutline
The Honors Project shall consist of the design and development of software, along with
| full documentation and a users’ manual designed to accompany the software that explains
all of its features. The software will be comprised of three components. This first
fundamental component allows the user to incorporate graphical objects created by
existing image-creation applications, e.g. Maya or Blender, into libraries containing
information that describes the attributes of each object, e.g. height and weight. The
second component will allow the user to create simulated terrains that will serve as the
backdrop onto which objects created by the first component can be placed. The central

component will translate the information created by the other two components into the

actual simulated environment and will allow the user to navigate through it. A novel

6 Section 1 - Original Honors Project Proposal

feature of this software is that the attributes stored with each object can be used to add
realism to the simulation. For example, the weight of an object could determine if the
user could move it. As part of the IDE, during the simulation, the user will be able to
click on any image in the simulation to obtain a detailed description of an object’s

attributes.

Preparation
Prior to undertaking this Honors Project, I will have completed the following courses
needed to prepare me for such an undertaking:

CPTR 247 — Data Structures

CPTR 448 — Advanced Development & Design

PHYS 225 — Introductory Mechanics

PHYS 226 — Introductory Electricity & Magnetism

IIS 800 — Independent Study in Computer Graphics
The Data Structures and Advanced Development & Design classes have given me the
background necessary to understand the type of structures needed to support the large
amount of interactive data necessary for this project, as well as a clear understanding of
the software engineering process required for the development of a complete product.
My background in fundamental physics is necessary because the system will allow for
the realistic representation of real-world objects. I am currently enrolled in PHYS 331 -

Classical Mechanics for the Fall of 2004. This course will add to my understanding of

the properties that need to be incorporated into the libraries developed in this project.

What will I gain from this project? How will I accomplish these goals?

When I continue with my education and/or begin my career once I graduate from

Section 1 - Original Honors Project Proposal 7

Lycoming College, I plan to be involved in the design and/or research of digital systems
that represent realistic environments. I am particularly interested in systems that are as
flexible as possible so that a wider array of environments and projects can be created
using a single base engine. This Honors Project is basically the core of such an engine. It
will strengthen and advance my following skills:

Project Management

Computer Graphic Design and Manipulation

Advanced Data Structure Management

Analysis of Algorithm Complexity

Implementation of Physics through Software Engineering

The final product of this project will also give me a demo program which will showcase
my software engineering abilities. So, while the saying “A journey is made to reach a
goal, but it is the journey that matters, in the end” is true in this case, since I will be
gaining advanced skills in the process, the “end of the journey” is also important. The
final product will be an important stepping stone in starting my career or when applying

to graduate school.

Environment / Availability
This project will work on a standard win32 (Microsoft Windows) operating system, and
will be developed using Microsoft Visual C++ and the DirectX 9 SDK. The final product

will be a windows application and thus will be compatible with any Microsoft Windows

operating system that supports DirectX 9 and has it installed.

8 Section 1 - Original Honors Project Proposal

Technical Summary:

This project involves the creation of an XML data collection (known as the “Entity
System”) that is able to represent any real-world entity, living or non-living, as a set of
data objects and attributes. This data is to be interpreted and implemented in a real-time
three-dimensional environment with all entities graphically represented in said
environment. Limited user interaction will be provided in the final product, which shall
be implemented using Microsoft Visual C++ and the DirectX 9 SDK on Windows XP.
The last part of the project, the “demo program,” should be viewable on any windows

system that supports DirectX 9.

The Entity System will be designed to hold information about a digital environment and
to interpret and implement what is necessary for the system's current environment
dynamically, using user-created rule-sets. In this way, the entity system is meant to be a
complete environment generation toolkit, providing the data structure framework for any
three-dimensional environment.

Proposed Project Stages: 1) Entity System (XML Data Collection)
2) E.D.G.E Tool — Entity Template and Entity

Manager
3) Rule-set Format and Intermediate Functionality
4) W.LM. Tool — Environment and Entity Instance
Manager
5) Entity Instance and Environment Test Data Set

6) User Interaction Module
e First-Person (user) movement.
e Identification of Entities selected using a

mouse.
7) Unit Demo

10 Section 1 - Original Honors Project Proposal

Proposed Project Stage Summaries:
Entity System
This set of XML data collections will be able to hold data suitable for any entity,
graphical or non-graphical, physical or abstract. This Entity System’s purpose is to be a
system dynamic enough that any conceivable object, force, or environmental component
can be suitably represented while keeping order and structure to the overall system. This
second purpose will make sure the system is easy to understand so that users will be able
to create their own environments and entities as easily as possible.
Stage Sub-Components

e outline basic set of XML Entity Templates

compile lists of fundamental Entity attributes

[]
o compile lists of more specific Entity attributes
e encode all XML Entity Templates into an XML file

E.D.G.E Tool — Entity Manager

The Entity Manager is to be a windowed application that allows the user to interface with
the Entity System itself and to create, edit, and manage .ent files which contain collections
of Entity data. Basically, this application will be used in order to create and manage the

set of Entities created from the Entity Template collection.

Tasks and Subsections:

e design and create the basic windowed application
allow a user to Add/Edit/Delete Entity Templates
allow a user to Create/Edit/Delete Entity libraries (.elb files)
allow a user to Add/Edit/Remove Entities from Entity libraries (.elb files)
add a viewer window to the application so the user can preview the graphical
representation of an Entity, if available.

Section 1 - Original Honors Project Proposal 11

Rule-set Format and Intermediate Functionality

This stage of the project involves using the £.D.G.E. Tool to add all of the Entity
Templates created in Stage 1 to E.D.G.E. and also to add functionality to E.D.G.E. so that
some form of ‘rule-sets’ can be created where a user can easily mass add/edit/remove

attributes from sets of Entities and alter the function libraries the Entities point to.

The premise here is that not all virtual environments require the same functionality and/or
entity attributes. Therefore, this tool will allow a user to easily convert Entities made for
one environment into a format that is acceptable in a second environment that operates
under different rules (i.e., calls a separate library of functions used for interaction). This
setup means that once a single environment and its Entities are designed, the Entities will
be reusable in a second environment with minimal effort.
Tasks and Subsections:

e design user control of rule-sets

e add Entity conversion functionality to E.D.G.E.
¢ allow the user to turn individual attributes on/off

W.LM. Tool - Environment Manager

The W.I.M. Tool is much like the first tool: it allows the user to create, edit and manage
data files. This tool allows the manipulation of .env files that determine environment
data, such as landscape, viewing options, etc. Environment files will also contain
information about the location and placement of Entities Instances, based off of Entities
created using the E.D.G.E. Tool. These Entity Instances can be further adjusted inside of

the W.I M. Tool.

12 Section 1 - Original Honors Project Proposal

Tasks and Subsections:
e design environment data file format
allow for the creation and saving of new environments (.wid files)
allow for the editing and saving of environments (.wid files)
allow for the management (delete, move, copy) of environments (.wid files)
allow a user to add/edit/delete Entity Instances using .elb libraries

Entity Instance and Environment Test Data Set
This portion of the project is simply the use of the E.D.G.E. and W.L.M. tools to create a
set of Entity Instances and an environment to use for testing purposes. This will be the
first set of data used to create a digital environment using the Entity System.
Tasks and Subsections:

e create ten Entity Instances using the W.I.M. Tool

e create one environment using the W.I.M. Tool
e place all ten Entity Instances in the environment

User Interaction Module
This is the final module to be implemented in this graphical engine. This is where the
core functionality is stored that allows a user to not only view an environment and its
contents, but also to move about the environment and bring up data screens on individual
entities.
Tasks and Subsections:

e display the environment and its contents properly

¢ allow the user to move about the environment

e allow the user to bring up data screens about an individual entity when clicked on

using a mouse.

Unit Demo

This is the demonstration of the finished product once all of the other stages are

complete. Library entries will be pulled into a scene where the user can move around and

interact.

Section 1 - Original Honors Project Proposal

Proposed Project Schedule:

June 2004

July 2004

August 2004

September 2004

October 2004

November 2004

December 2004

January 2005

February 2005

March 2005

April 2005

Learn XML

Requirements & Specification Documentation

Learn DirectX SDK 9

Learn DirectX SDK 9, continued

Map out Entity Templates (Stage 1 Completed)

Overall Design & Integration Documentation

Detailed Design Documentation

Research and Completion of General Project Documentation
Develop E.D.G.E. Tool (Stage 2 Completed)
User-Controlled Rule-Set implemented (Stage 3 Completed)
Develop W.LM. Tool (Stage 4 Completed)

Revise Core Engine Documentation

Create Test Data (Stage S Completed)

Code Final Component of Graphical Engine

Refine and document all Code and Documentation

(Stage 6 Completed)

Write User Manual

Create Unit Demo (Stage 7 Completed)

13

14 Section 1 - Original Honors Project Proposal

Bibliography

Angel, Edward. Interactive Computer Graphics: A Top-Down Approach with OpenGL
(3rd Edition). Boston: Addison-Wesley, 2002.

Bourg, David M. Physics for Game Developers. Sebastopol, CA: O’Reilly & Associates
Inc., 2002.

Dalmau, Daniel Sanchez-Crespo. Core Techniques and Algorithms in Game
Programming. New Riders, 2003.

Engel, Wolfgang, Andre’ Lamothe, and Amir Geva. Beginning Direct3D Game
Programming 2" Edition. Premier Press, 2003.

Hansen, Henning. Nitty Gritty Windows Programming with C++. Addison-Wesley,
2001.

Harold, Elliotte Rusty. XML Bible 2" Edition. New York, NY: Hungry Minds Inc.,
2001.

Josuttis, Nicolai M. The C++ Standard Library. Boston: Addison-Wesley, 1999.

LaMothe, Andre. Tricks of the Windows Game Programming Gurus 2" Edition. SAMS,
2002.

McShaffry, Mike. Game Coding Complete. Paraglyph Publishing, 2003.

Snook, Gregory. Real-Time 3D Terrain Engines Using C++ and DirectX 9. Charles River
Media, 2003.

Stroustrup, Bjarne. The C++ Programming [.anguage Special Edition. Florham Park, NJ:
Addison-Wesley, 2000.

Walsh, Peter. The Zen of Direct3D Game Programming. Premier Press, 2002.

Section 2 - Software Project Management Plan 15

Section 2

Software Project Management Plan

16 Section 2 - Software Project Management Plan

Section 2 - Software Project Management Plan

IEEE Software Project Management Plan

Requirements & Specification Document

For

An Honors Project in Computer Science

Honors Project Developer:
Jason M. Black

Honors Committee Chair;
Dr. Eileen M. Peluso

Honors Committee Members:
Dr. Santhusht S. deSilva
Dr. David G. Fisher
David Heffner, Associate Dean of
Information Technology

17

18

Section 2 - Software Project Management Plan

Table of Contents

Introduction
1.1. Project Overview
1.1.1. Honors Project Summary
1.1.2. Honors Project Outline
1.1.3. Preparation for the Honors Project
1.1.4. Honors Project Goal List
1.2. Product Deliverables
1.2.1. Documentation
1.2.2. Software
1.3. Evolution of the SPMP
1.4. Reference Materials
1.4.1. Books
1.4.2. Articles
1.5. Definitions and Acronyms
1.5.1. Term Definitions
1.5.2. Acronym Definitions
Project Organization

2.1. Process Model
2.1.1. Research Outline
2.1.2. List of Project Milestones
2.1.3. Format of Milestone Entries
2.2, Organizational Structure
2.2.1, Contributors to the Honors Project
2.2.2. Communication Diagram
Managerial Process

3.1. Management Objectives and Priorities
3.1.1. Purpose of the Honors Project
3.1.2. Core Sentence
3.1.3. Detailed Goal List

3.2. Risk Management
3.3. Honors Project Review Process

Technical Process

4.1. Methods, Tools, and Techniques
4.1.1. Hardware
4.1.2. Software

4.2. Software Documentation
4.2.1. Detailed Project Milestone List
4.2.2. Data Dictionary

Schedule

5.1. Estimate of Time Commitment
5.2. Schedule

Section 2 - Software Project Management Plan 19

1. Introduction

1.1. Project Overview

1.1.1.

1.1.2.

1.1.3.

Honors Project Summary

The design and development of graphical applications, specifically realistic simulations
such as environmental simulators, games, and interactive training programs, is an active
area of research in the field of Computer Science. In this Honors Project, 1 will design
and develop an Integrated Development Environment (IDE) that will support libraries of
graphical objects that can be integrated into complex 3D scenes through which the user
will be able to navigate. In the final product, users will be able to view individual objects
created by existing image-creation applications and combine them, resulting in a virtual
world simulation in which the user becomes a participant.

Honors Project Outline

The Honors Project shall consist of the design and development of software, along with
full documentation and user manuals designed to accompany the software that explains
all of its features. The software will be comprised of four components. The first piece of
software will allow the user to specify physical attributes of materials and store that
information in libraries. The second software component allows the user to incorporate
graphical objects created by existing image-creation applications, e.g. Maya, 3DS Max
and Blender, into libraries containing information that describes the attributes of each
object, e.g. height and weight. The third component will allow the user to create
simulated terrains that will serve as the backdrop onto which objects created by the

-second component can be placed. The final component, the simulation component, will

translate the information created by the other three components into the actual simulated
environment and will allow the user to navigate through it. A novel feature of this
software is that the attributes stored with each object can be used to add realism to the
simulation. For example, the weight of an object could determine if the user could move
it with a push. As part of the IDE, during the simulation, the user will be able to click on
any image in the simulation to obtain a detailed description of an object’s attributes.

Preparation for the Honors Project

Prior to undertaking this Honors Project, I will have completed the following courses
needed to prepare me for such an undertaking:

CPTR 247 — Data Structures

CPTR 448 — Advanced Development & Design
PHYS 225 — Introductory Mechanics

PHYS 226 — Introductory Electricity & Magnetism
1IS 800 — Independent Study in Computer Graphics

The Data Structures and Advanced Development & Design classes have given me the
background necessary to understand the type of structures needed to support the large
amount of interactive data necessary for this project, as well as a clear understanding of
the software engineering process required for the development of a complete product.
My background in fundamental physics is necessary because the system will allow for
the realistic representation of real-world objects. 1 was enrolled in PHYS 331 — Classical
Mechanics for the Fall of 2004. This course added to my understanding of the properties
that need to be incorporated into the libraries developed in this project.

20 Section 2 - Software Project Management Plan

1.1.4. Honors Project Goal List

= Create and demonstrate a material-based object system
o Load multiple objects into an environment
o Ability to view an object’s material properties
= Allow a user to interact with the 3D environment
o Move around the environment
o Push objects
o Jumping
» Demonstrate the use of simulated physics in a 3D environment
o Realistic movement of objects when pushed

1.2. Product Deliverables

1.2.1. Documentation

Requirements and Specification Document (IEEE SPMP) |
Detailed Design Document ‘
Developer Tools User Manuals |
Simulation User Manual

Commented Simulation Source Code

‘
|
1.2.2. Software \

= Material Editor 1
= Entity Dynamic Generation Environment (E.D.G.E.) Tool !
= World Instance Manager (W.I.M.) Tool |
* Functional Simulation Executable l

|

1.3. Evolution of the SPMP

When it is necessary for this document to be updated, the update may be done immediately. |
Whenever such an update occurs, a copy of the updated document with all recent changes |
highlighted will be delivered to the chair of the Honors Project Committee within three (3) days.

Section 2 - Software Project Management Plan 21

1.4. Reference Materials

1.4.1.

1.4.2.

Books

Angel, Edward. Interactive Computer Graphics: A Top-Down Approach with OpenGL
(3rd Edition). Boston: Addison-Wesley, 2002.

Bourg, David M. Physics for Game Developers. Sebastopol, CA: O’Reilly & Associates
Inc., 2002,

Dalmau, Daniel Sanchez-Crespo. Core Techniques and Algorithms in Game
Programming. New Riders, 2003.

Engel, Wolfgang, Andre’ Lamothe, and Amir Geva. Beginning Direct3D Game
Programming 2™ Edition. Premier Press, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Flynt, John P. Software Engineering for Game Developers. Thomson Course
Technology, 2005.

Hansen, Henning. Nitty Gritty Windows Programming with C++. Addison-Wesley,
2001.

Harold, Elliotte Rusty. XML Bible 2" Edition. New York, NY: Hungry Minds Inc.,
2001.

Josuttis, Nicolai M. The C++ Standard Library. Boston: Addison-Wesley, 1999.

LaMothe, Andre. Tricks of the Windows Game Programming Gurus 2" Edition. SAMS,
2002.

McShaffry, Mike. Game Coding Complete. Paraglyph Publishing, 2003.

Snook, Gregory. Real-Time 3D Terrain Engines Using C++ and DirectX 9. Charles River
Media, 2003.

Stroustrup, Bjame. The C++ Programming Language Special Edition. Florham Park, NJ:
Addison-Wesley, 2000.

Walsh, Peter. The Zen of Direct3D Game Programming. Premier Press, 2002.

Articles

Various websites were referenced, but not significantly. Unfortunately no useful journal
articles were found during my period of research.

Section 2 - Software Project Management Plan 21

1.4. Reference Materials

1.4.1.

1.4.2.

Books

Angel, Edward. Interactive Computer Graphics: A Top-Down Approach with OpenGL
(3rd Edition). Boston: Addison-Wesley, 2002.

Bourg, David M. Physics for Game Developers. Sebastopol, CA: Q’Reilly & Associates
Inc., 2002.

Dalmau, Daniel Sanchez-Crespo. Core Techniques and Algorithms in Game
Programming. New Riders, 2003.

Engel, Wolfgang, Andre’ Lamothe, and Amir Geva. Beginning Direct3D Game
Programming 2™ Edition. Premier Press, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994,

Flynt, John P. Software Engineering for Game Developers. Thomson Course
Technology, 2005.

Hansen, Henning. Nitty Gritty Windows Programming with C++. Addison-Wesley,
2001.

Harold, Elliotte Rusty. XML Bible 2" Edition. New York, NY: Hungry Minds Inc.,
2001.

Josuttis, Nicolai M. The C++ Standard Library. Boston: Addison-Wesley, 1999.

LaMothe, Andre. Tricks of the Windows Game Programming Gurus 2™ Edition. SAMS,
2002.

McShaffry, Mike. Game Coding Complete. Paraglyph Publishing, 2003.

Snook, Gregory. Real-Time 3D Terrain Engines Using C++ and DirectX 9. Charles River
Media, 2003.

Stroustrup, Bjarne. The C++ Programming Language Special Edition. Florham Park, NJ:
Addison-Wesley, 2000.

Walsh, Peter. The Zen of Direct3D Game Programming. Premier Press, 2002.

Articles

Various websites were referenced, but not significantly. Unfortunately no useful journal
articles were found during my period of research.

22 Section 2 - Software Project Management Plan

1.5. Definitions and Acronyms

1.5.1. Term Definitions

Agent

Character

Entity

Environment

First-Person View

Material

Non Player Character

An entity that acts in an environment with some degree of
autonomy. Therefore, an agent is a self-controlled
component of an environment.

Short for ‘player character’; this is the representation of
the user in the simulation.

Any object or software controlled agent in the
environment. Subsequently, entities are any non-terrain,
non-user atomic structures in the environment.

A finite simulation of a three-dimensional space,
specifically referring to the most static elements of that
space. Example: ground and sky in an outdoor simulation.

This is a method of viewing an environment where the
user sees what the PC (see below) would actually see if
the user were looking through its eyes.

Referring to an elemental substance or a combination of
such substances. Iron and oxygen are elemental
substances, wood and water are combinations, but all are
materials. All objects in an environment are composed of
materials, and derive some of their properties from their
material composition.

Any agent in an environment that isn’t controlled by the

user.
Object These are non-intelligent, individual components of a
simulation. Example: furniture, buildings and plants.
Player Character This is the agent that is directly controlled by the user and
is the user’s primary method of interacting with the
environment.
User This is the person who is using the simulation.
World Another name for an Environment.

1.5.2. Acronym Definitions
PC Player Character
SPMP Software Project Management Plan

Section 2 - Software Project Management Plan 23

2. Project Organization

2.1. Process Model

2.1.1. Research Qutline

A general outline of the stages that this honors project can be broken down into follows.
The first stage consists of planning, scheduling, and brainstorming, culminating in the
creation of this document. The second stage is a period of research done in preparation
for the design document. This research includes reading primary texts, skimming
reference texts, searching for useful journal articles, and examining the software
architecture of two computer games (one published, one open source) whose source code
is free to browse. Once the research stage is completed, the detailed design document will !
be constructed. This will lay out the software component of the honors project in detail. _:
This stage of the project should be completed by late November 2004. After the ‘
documentation is completed the actual software development stages will commence with i
the development of design tools. Once the tools are finished, work will begin on the
simulation software itself. This software will be constructed in builds listed in section ‘
2.1.2 of this document and detailed in section 4.2.1 of this document. These builds will be
worked through until April 2005 when the debugging, testing, and user documentation :
stages will be performed. The honors project will conclude with a demonstration and ‘
defense of the project to the honors committee. ‘
i

2.1.2. List of Project Milestones ’
i

1) Specification Documentation

2) Literature Research ‘
3) Detailed Design Documentation
4) Tool Creation

5) First Production

6) Second Production j
7) Third Production i
8) Fourth Production |
9) Content Complete

10) Debugging

11) User Manuals

12) Honors Project Defense

2.1.3. Format of Milestone Entries

The following is a list of fields and explanations of what information is in said fields for
the detailed milestone descriptions given in section 4.2.1.

Milestone Title

This is the name of the milestone.

Short Description

The goals of the milestone are laid out in paragraph form. Goals are to be
specific, avoiding any vague references such as ‘nearly’ or ‘optimal’.

24 Section 2 - Software Project Management Plan

Due Date

This is the date when the milestone is to have been fully completed and having
passed the acceptance criteria.

Acceptance Criteria

A list of tests that must be passed before the milestone can be said to have been
completed.

Risk Assessment

This is a description of what could go wrong with this milestone build and what
can be done to prevent such a situation from occurring. Details of how to deal
with an already occurred setback are also listed here.

Deliverables

This is a bulleted list of the milestone’s results. These results can include
anything from physical documentation or code segments to accomplishing a
specific type of research.

2.2, Organizational Structure
2.2.1. Contributors to the Honors Project

The basic organization of this honors project is that I, Jason Black, will be conducting the
research and implementing the project in its various stages. Direct advising will be done
through meetings with Dr. Eileen Peluso, the honors committee chair, once a week.
Additional meetings will be scheduled as needed. If necessary, members of the honors
committee will be called upon for assistance, though these instances should be rare. The
honors committee will be updated on the state of the honors project by the honors
committee chair as needed.

2.2.2, Communication Diagram

Dr. Eileen Peluso Honors Committee
Honors Committee Chait ’ Membets
Jason Black

Honors Student

Section 2 - Software Project Management Plan 25

3. Managerial Process

3.1. Management Objectives and Priorities

3.1.1.

Purpose of the Honors Project

When [continue with my education through graduate school and later begin my career
once [graduate from Lycoming College, I plan to be involved in the design and research
of digital systems that represent realistic environments. I am particularly interested in
systems that are created with maximum flexibility so that a wider array of environments
and projects can be created using a single base engine. This Honors Project is basically a
fundamental implementation of such an engine. It will strengthen and advance my
following skills:

Project Management

Computers Graphic Design and Manipulation

Advanced Data Structure Management

Analysis of Algorithm Complexity

Implementation of Physics through Software Engineering

The final product of this project will also give me a working program which will
showcase my software engineering abilities. So, while the saying “A journey is made to
reach a goal, but it is the journey that matters, in the end” is true in this case, since I will
be gaining advanced skills in the process, the “end of the journey” is also important. The
final product will be an important stepping stone in starting my career and when applying
to graduate school.

. Core Sentence

This sentence is meant to represent the essence of the simulation module’s structure
without going into heavy detail. The core sentence doesn’t limit a simulation
implementation, but is created in order to remind the designer of the fundamental ideas
behind the simulation’s design.

“This simulation will be a first-person outdoor simulation where the user takes on the
role of a person who experiments with objects found in the environment.”

3.1.3. Detailed Goal List

Create and demonstrate a material-based object system

» Ability to view an object’s material properties

When viewing the environment the user will be able to click on any object in the
environment, such as a box, a tree, or a rock. This action will bring up a list of
the properties that this object has based on the materials that constitute it. The
purpose of this goal is to allow the user to understand the material-based object
system visually.

Allow a user to interact with the 3D environment

26 Section 2 - Software Project Management Plan

= Move around the environment

combinations thereof. The PC will also be able to smoothly turn in order to face
any part of the environment. This goal is necessary for a user to be able to view
and interact with the environment through his or her character.

f
|
The PC will be able to move in all four cardinal directions as well as
= Push objects

Moveable objects will be able to be pushed when the PC moves into them. The
objects will then follow physical laws and move, skid, and possibly roll based 2
on the force and direction of impact. The purpose of this goal is to demonstrate L
the addition of physics to the simulated environment. :

= Jump
The PC will be able to jump off of the ground into the air when this goal is
implemented. The purpose here is to show that gravity works realistically and

also to add another dimension of control to the user’s character.

Demonstrate the use of simulated physics in a 3D environment

= Realistic movement of objects when pushed

Not only will objects be moveable, but if they are moved they will slide and roll
across the terrain realistically. Also, if objects are loaded in the air or fall off of
an edifice, they will be subject to gravity and will interact with the terrain
accordingly.

3.2. Risk Management

There are two levels of general risk management of the honors project in use. The first is the
continuous keeping of a project log where I keep my hours for the week. By doing this I am able
to make sure that I put in an appropriate number of hours into the honors project each week. An]
estimation of these hours is specified in section 5.1 of this document. The second risk]
prevention is the weekly review meetings described in section 3.3 of this document. Milestone |
specific risk management and prevention is listed in the detailed project milestone list in section

42.1.

3.3. Honors Project Review Process

The general process for reviewing the progress of the honors project is that every Tuesday \
afternoon from 1:30-2:30 I will meet with my honors committee chair, Dr. Eileen Peluso, and i
we will review everything that was accomplished in the previous week. Updates to the schedule ‘
and future directions of the project will also be touched on at each meeting. Whenever this or |
another important document is updated in a given week, an updated copy will be submitted to |
the honors committee chair by 2:00 on Monday so that there is time for review before the i
Tuesday meeting. '

Section 2 - Software Project Management Plan 27

4. Technical Process

4.1. Methods, Tools, and Techniques
4.1.1. Hardware

This project was designed to work on an IBM PC with Windows XP installed and with
the DirectX 9.0 drivers installed. Other than these basic requirements, there are no
hardware requirements.

4.1.2. Software

Software required for this honors project includes:
= Microsoft Visual Studio .NET 2003
o VC++ .NET
o VB .NET
o MSXML v4.0
= DirectX 9.0 SDK
= A 3D Mesh Editor (DeleD)

4.2. Software Documentation

4.2.1. Detailed Project Milestone List

It is important to note that this section was continually updated as the project became
more refined during the Detailed Design Documentation milestone. f

Milestone #1: Specification Documentation Milestone

Short Description:

The goal of this milestone is to complete the Specification Documentation in the
form of an IEEE SPMP document.

Due Date:

Acceptance Criteria:

Saturday, September 18, 2004
All subsections of the IEEE SPMP Specification Document must be filled out. i
Risk Assessment;]
The only risks for this milestone are that it could be incomplete or not completed
on time. To avoid this it will be reviewed on Tuesday, September 21* at the [
weekly review meeting and approved by the honors committee chair. |

Deliverables:

= JEEE SPMP Specification Document

28 Section 2 - Software Project Management Plan

Milestone #2: Literature Research Milestone

Short Description:

This milestone is meant to provide me with all of the information I will need for
the design and development of the honors project. During this period I will read
several books, pursue literature reviews of journals, and study preexisting free-
to-view code that is similar to what I will be writing. The titles of the books to
be read in this phase are available in the project calendar in section 5.4.

|
Due Date: i

Saturday, October 30, 2004

By the end of this milestone I should have a set of notes that will allow for the
creation of the Detailed Design Document. A meeting with the honors
committee chair on Tuesday, November 2™ will confirm that this criterion has

Acceptance Criteria:
been met and that I am prepared to work on the detailed design milestone.

!
Risk Assessment: l

The major risk for this milestone is that I will have an incomplete view of what
to detail in the detailed design documentation. In order to prevent this I need to \
read all of my materials and take thorough notes. This performance task will be
confirmed at weekly review meetings. i
Deliverables:

* Research Notes

Milestone #3: Detailed Design Documentation Milestone

Short Description:

The Detailed Design Document is the product of this milestone. This document
will intricately detail all of the modules, major functions and algorithms that will 1
be used in the development of the simulation program. Detailed information on !
data types and function parameters will also be included.

Due Date:

Acceptance Criteria:

i
Friday, December 10, 2004 ‘
F

The Detailed Design Document must completely outline the entire simulation

program. All defined modules must be completely defined in terms of general ‘,
internal structure, input, and output. This will be tested through the use of ‘
diagrams and weekly review sessions with the honors committee chair. l

Risk Assessment:

| The risks for this milestone are the loss of time to work on the milestone and the
f possibility that the resulting document will be incomplete. Weekly review |

Section 2 - Software Project Management Plan 29

meetings will be crucial during this milestone. Most likely this milestone will be
broken down into smaller segments when this point in the honors project is
reached.
Deliverables:

* Detailed Design Document

Milestone #4: Tool Creation Milestone

Short Description:

Once the design for the simulation is completed in the Detailed Design
Document, there will be three tools to assist in the creation of data that will
allow the simulation to perform. These three tools are the Material Editor Tool,
the E.D.G.E. Tool and the W.I.M. Tool. The Material Editor Tool allows for the
maintenance of a database containing Material datatype data. The E.D.G.E. Tool
allows for the creation and editing of Entity datatype data. The W.I.M. Tool
allows for the creation and maintenance of Environment datatype data. These
three datatypes are detailed in section 4.2.2 of this document.

Due Date:
Monday, January 31, 2005

Acceptance Criteria:

The acceptance criteria for this milestone is that each of the tools will create and
edit their respective datatypes according to the general specification in section
4.2.2 of this document as well as the detailed datatype specifications available in
(section pending) of the Detailed Design Document.

Risk Assessment:

The risks for this milestone are that it will not be accomplished in its short
timeframe and that the output data will not meet specifications. The first risk is
alleviated by the fact that this milestone takes place early in the spring semester
when workload with other responsibilities is light, so that more than the average
weekly time commitment can be spent on this milestone. As for not meeting
datatype specifications, the Detailed Design Document should be complete
enough that this will not be a problem. Also, the weekly review sessions with
the honors committee chair should prevent this setback from occurring.

Deliverables:

= Material Editor Tool
= ED.GE. Tool
= W.ILM. Tool

Milestone #5: First Production Milestone

Short Description:

This milestone will be the first of four that deal with the simulation code. Only
the core necessities for the simulation to run are included in this milestone. This
milestone can be broken down into three tasks. The first task includes the

30 Section 2 - Software Project Management Plan

creation of the menus to enter and exit the program, as well as the ability for the
user to pause and resume the simulation without exiting. Secondly, the loading
of XML data created from the developer tools into the simulation must be
accomplished. Finally, the rendering of the environment from this data
(elevation only), without texture, needs to perform without any errors.

Due Date:
Friday, February 25, 2005

Acceptance Criteria:

Before this milestone is accepted it must pass the appropriate tests detailed in
section 4.3 of this document.

Risk Assessment:
The primary risk for this milestone is the chance of going over the set time
period for passing the acceptance criteria. In order to prevent this from
happening the average work hours per week will be increased to 15, and
secondary review meetings will be held if necessary.
Deliverables:

= Start Menu with ‘Start’ and ‘Exit’ options

= Pause Menu with ‘Continue’ and Exit’ options

» Rendering of non-textured elevation map

Milestone #6: Second Production Milestone

Short Description:

This is the second of four milestones dealing with the simulation code. The first
task in this milestone focuses on the PC. The user must be able to move the PC
in all four directions, turn the PC smoothly in either direction, and also must be
able to click on objects and view their properties. The second task in this
milestone concentrates on incorporating collision detection between the PC and
the environment.

Due Date:
Friday, March 4, 2005

Acceptance Criteria:

Before this milestone is accepted it must pass the appropriate tests detailed in
section 4.3 of this document.

Risk Assessment:

The primary risk for this milestone is the chance of going over the set time
period for passing the acceptance criteria. In order to prevent this from
happening the average work hours per week will be increased to 15, and
secondary review meetings will be held if necessary.

Deliverables:

Section 2 - Software Project Management Plan 31

» User control of the PC through movement and turning
= Working physics simulation for collision

Milestone #7: Third Production Milestone

Short Description:

The third production milestone is concerned with the loading and display of
objects that will respond to physics in the environment. These moveable objects
will take the form of boxes and crates that the user can push with the PC. These
boxes and crates will not only move due to force applied by the PC, but will also
slide, fall and roll according to physical laws

Due Date:
Friday, March 18, 2005

Acceptance Criteria:

Before this milestone is accepted it must pass the appropriate tests detailed in
section 4.3 of this document.

Risk Assessment:

The primary risk for this milestone is the chance of going over the set time
period for passing the acceptance criteria. In order to prevent this from
happening the average work hours per week will be increased to 15, and
secondary review meetings will be held if necessary.

Deliverables:

* Loading of box and crate objects
= Object collision detection

Milestone #8: Fourth Production Milestone

Short Description:

The fourth production milestone focuses on allowing the user to view the
properties of an object by highlighting it. The secondary goal of this milestone is
the addition of immobile objects to the environment. The completion of the
secondary goal will depend on the remaining time.

Due Date:

Saturday, April 2, 2005

Acceptance Criteria:

Before this milestone is accepted it must pass the appropriate tests detailed in
section 4.3 of this document.

Risk Assessment:

32 Section 2 - Software Project Management Plan

The primary risk for this milestone is the chance of going over the set time
period for passing the acceptance criteria. In order to prevent this from
happening the average work hours per week will be increased to 15, and
secondary review meetings will be held if necessary.

Deliverables:

= Ability to examine object properties
* Loading of rock, plant, and bush environmental objects

Milestone #9: Content Complete Milestone

Short Description:

This brief milestone allots time for the creation of any additional graphics that
have not been created up to this point. The texturing of the ground and objects is
included in this milestone. Also, any object information that is incomplete or
missing will be finished in this milestone.

Due Date:

Tuesday, April 5, 2005

Acceptance Criteria:

The acceptance criterion for this milestone is that no non-code data is missing
from the honors project. This includes graphics, sound, and database
information.

Risk Assessment:

There is no real risk in this milestone since this is a cleanup milestone.

Deliverables:

= No missing no-code content for the honors project
* Texture ground and objects

Milestone #10 Debugging Milestone

Short Description:

This milestone will consist of using the finished simulation and trying all of the
options repeatedly. Any bugs or deviations from documentation will be recorded
and fixed. Also, if time and resources permit, beta testers may be ‘hired’ in order
to find bugs in the simulation.

Due Date:

Tuesday, April 12, 2005

Acceptance Criteria:

There are no known bugs in the simulation software, and any known bugs that
have not been fixed have been written off as acceptable by both me and the
honors committee chair.

Section 2 - Software Project Management Plan 33

Risk Assessment:
The primary risk for this milestone is the inability to fix all bugs with the
simulation. The best way to prevent this situation is to have testers perform
testing on the simulation in order to free up time for myself in order to fix
already known bugs.
Deliverables:

» There are no bugs left in the simulation code.

Milestone #11: User Manuals Milestone

Short Description:

User manuals will be written for all three development tools as well as for the
simulation itself. The tool manuals will detail how to make all of the data in
order to create a simulation, and the simulation manual will teach a user how to
use the simulation properly.

Due Date:

Tuesday, April 19, 2005

Acceptance Criteria:

Manuals are approved by the honors committee chair.

Risk Assessment:

There are no major risks involved in this project milestone.

Deliverables:

User Manual for the Material Editor Tool]
User Manual for the E.D.G.E. Tool ‘

User Manual for the W.I.M. Tool
User Manual for the Simulation Software

Milestone #12: Honors Project Defense Milestone

Short Description:

This is the actual presentation of the honors project, including but not limited to:
all documentation, source code, user manuals, and a working version of the
simulation itself.

Due Date:

Tuesday, April 26, 2005

Acceptance Criteria:

The honors committee approves of my honors project after I present all of the
necessary information.

34 Section 2 - Software Project Management Plan

Risk Assessment:

At this point, there is little that can be done in order to assure success other than
to practice the presentation and to organize all honors project materials.

Deliverables:
= Honors Presentation

4.2.2. Data Dictionary

This section has been moved to the Detailed Design Document.

Section 2 - Software Project Management Plan 35

5. Work Packages, Schedule, and Budget
5.1. Estimate of Time Commitment

The amount of time to be spent on the honors project in the period of a week is no less than 12
hours with an average of 12-15 hours per week, including weekly review meetings.

5.2. Schedule

Fall 2004

September 2004

Week 1: Requirements Document
Week 2: Specification Document
Week 3: Specification Document
End of Specification Documentation Milestone
Week 4: Read Book: Game Coding Complete
Week 5: Read Book: Core Techniques and Algorithms
October 2004
Week 1: Read Book: Tricks of Windows Gurus
Week 2: Read Book: 3D Terrain Engines
Week 3: Review one MUD Codebase (DoT)
Week 4: Review one 3D Engine (Quake 2)
End of Literature Research Milestone
November 2004
Week 1: Design Documentation
Week 2: Design Documentation
Week 3: Design Documentation — First Complete Draft
Week 4: THANKSGIVING BREAK
December 2004
Week 1: Design Documentation
Week 2: Design Documentation
End of Detailed Design Documentation Milestone
Week 3: FINALS WEEK
Week 4: VACATION

Week 5: VACATION

36 Section 2 - Software Project Management Plan

Spring 2004

January 2004

Week 1: VACATION
Week 2: Material Editor
Week 3: E.D.G.E. Tool

End of Tool Creation Milestone

|
|
Week 4: E.D.G.E. Tool 1
f
f

February 2004

Week 1: W.I.M. Tool and Rendering Environment
Week 2: W.IL.M. Tool and Rendering Environment
Week 3: W.I.M. Tool and Rendering Environment
Week 4: W.I.M. Tool and Rendering Environment
End of First Production Milestone
March 2004
Week 1: SPRING BREAK (PC Movement and Collision)
End of Second Production Milestone
Week 2: Display Objects and Object Physics
Week 3: Display Objects and Object Physics ‘
End of Third Production Milestone
Week 4: Display of Object Properties f
Week 5: Display of Object Properties I
End of Fourth Production Milestone
April 2004
Week 1: Content Complete Milestone f
Week 2: Zero Bugs Milestone ‘
Week 3: User Manuals Milestone ‘

Week 4: Honors Defense Milestone (Finals Week)

Section 3 - Detailed Design Document 37

Section 3

Detailed Design Document

38 Section 3 - Detailed Design Document

Section 3 - Detailed Design Document

Detailed Design Document

Design & Testing Information

For

An Honors Project in Computer Science

Honors Project Developer:
Jason M. Black

Honors Committee Chair:
Dr. Eileen M. Peluso

Honors Committee Members:
Dr. Santhusht S. deSilva
Dr. David G. Fisher
David Heftner, Associate Dean of
Information Technology

39

40 Section 3 - Detailed Design Document

Table of Contents

1. Project Overview

1.1.
1.2.

1.3.

Relation to the SPMP

Work Packages

1.2.1. Honors Project Module List

1.2.2. Detailed Module Descriptions Format
1.2.3. Detailed Module Descriptions

Module Dependencies (Data Flow Diagram)

2. Detailed Module Information

2.1.

2.2,
2.3.

Detailed Class Diagrams (by Module)

2.1.1. Material Editor

2.1.2. E.D.G.E. Tool (Entity Dynamic Generation Environment)
2.1.3. W.ILM. Tool (World Instance Manager)
2.1.4. Window and State Management Framework
2.1.5. Debugging Console

2.1.6. Data Loading

2.1.7. User Input

2.1.8. Text Manipulation and Display

2.1.9. Screen Management

2.1.10.Camera

2.1.11.Terrain Rendering

2.1.12.Graphics / Rendering Pipeline

2.1.13. Collision Detection

Detailed Data Dictionary

Detailed Function Library

2.3.1. Material Editor

2.3.2. E.D.G.E. Tool (Entity Dynamic Generation Environment)
2.3.3. W.I.LM. Tool (World Instance Manager)
2.3.4. Window and State Management Framework
2.3.5. Debugging Console

2.3.6. Data Loading

2.3.7. User Input

2.3.8. Text Manipulation and Display

2.3.9. Screen Management

2.3.10.Camera

2.3.11. Terrain Rendering

2.3.12. Graphics / Rendering Pipeline

2.3.13. Collision Detection

3. Acceptance Testing

3.1.
3.2.

4. Ap
A.

Milestone Test List
Acceptance Test Details
pendix

Test Driver for Module #6 (Data Loading)
Al Driver Code

A2, .wid Test File
A3. .elb Test File
Ad. .mlb Test File

A.S. Expected Driver Qutput

Section 3 - Detailed Design Document 41

1. Project Overview

1.1. Relation to the SPMP

The Detailed Design Document, while a separate document from the SPMP, is in many ways an
extension of that document. The goals described in the SPMP are broken down further into
modules here, and these modules are described at the function and data level. Also, the flow of
data between these modules and data sources is described in the Data Flow Diagram. The data
dictionary from the SPMP will be expanded and more detailed in this document. Finally, the
exact nature of any tests used during the production milestones are listed and detailed. The
Detailed Design Document is primarily the technical aspect of the information presented in the
SPMP.

1.2. Work Packages
1.2.1. Honors Project Module List

The honors project code can be broken down into modules as follows:

Developer Modules

1. Material Editor
2. E.D.G.E. Tool
3. W.IM. Tool

Simulation Modules

4. Window and State Management Framework
5. Debugging Console

6. Data Loading

7. User Input

8. Text Manipulation and Display

9. Screen Management

10. Camera

11. Terrain Rendering

12. Graphics / Rendering Pipeline

13. Collision Detection

1.2.2. Detailed Module Descriptions Format

Module Name

Type: The type of module. (Stand-Alone Program || C++ Ultility Functions ||
C++ Class(es) and Functions || C++ Framework)

Input: This is the input the program takes, and where it comes from.

Output: What is the final product of this module?

Method: How was this coded? (Coded [in Visual Basic.NET / in C++])

Description: This is a full description of the module, its components, its uses, and

also any technical aspects (algorithms chosen, etc.) that are currently
known.

42

Section 3 - Detailed Design Document

1.2.3. Detailed Module Descriptions

Material Editor : Module #1

Stand-Alone Program.

user input

Material database . XML file

Coded in Visual Basic. NET.

This will be a single page form used to browse through an . XML file,
add entries, delete entries, and edit existing entries. There will also be
an option of choosing which . XML database file to be used / edited,
including the option of creating a brand new database. Each entry in the
database will consist of the following fields: Name, Mass, ID, and
Friction Rating (scale to be determined). Name is the name of the
material. Mass is the mass of an object given an atomic piece of it (this
is calculated using unit mass and AMUE). ID is an identification
number for each material which must be unique across all libraries.
Friction Rating (coefficient of friction?) will help determine how rough
the surface of an object is, but the method of creating such a scale is to
be determined.

E.D.G.E. Tool : Module #2

Stand-Alone Program.

User input, material database .XML file

Entity database . XML file

Coded in Visual Basic.NET.

The Entity Dynamic Generation Environment Tool will be composed
of the following subcomponents: entity library manager, entity editor,
and the material library loader.

The entity library manager will allow the loading of . XML files
containing complete information on multiple entities. New libraries
may be created at the user’s discretion, thereby allowing entities to be
sorted in multiple files. Any entity from a loaded library may be opened
up in the entity editor portion of this program to be updated and saved,
or deleted.

The entity editor will allow the developer to edit the following fields of
entity information: Name, 1D, Material List, X-File, Height, Width,
Depth, and an Immobile flag. Name is a string that identifies an entity,
but which does not need to be unique to that entity. ID is a user-
assigned identification number for the entity that must be unique
among all entities in a library (and other entity libraries as well, if they
are to be used together). Material List is a list of all materials the entity
if composed of as well as a percentage breakdown of that composition.
These materials may come from multiple libraries. X-File is a reference
to an .X file mesh that is the graphical representation of the entity in the
simulation. Height, Depth and Width determine the dimensions of the
entity in the simulation. Finally, the Immobile flag determines whether
an entity can be moved due to force or whether it will always remain in
the position that it loaded in.

The material library loader will allow the loading of different . XML
material libraries that may be used to fill out the Material List in the
above entity editor.

Section 3 - Detailed Design Document 43

W.IM. Tool : Module #3

Type:.
Input:
Output:
Method:

Description:

Stand-Alone Program.

User input, entity database . XML file

World file (format TBA)

Coded in Visual Basic.NET.

The World Instance Manager Tool will be composed of the following
subcomponents: bitmap editor, entity library loader, world file
manager, and the world file editor.

The bitmap editor will consist of a display region for the bitmap,
controls to edit the bitmap, and buttons to save and load bitmaps. The
display region will be X by Y pixels in size (TBA). The editing
controls will be a wand and two or three circles, all of which will allow
the user to either increase or decrease the color in a bitmap as the
control is drug around using the mouse. The bitmap itself will be in
black and white and so each pixel will have a numerical value from 0 to
255 where 0 is the lowest elevation and 255 is the highest.

The entity library loader functions much like the material library loader
in the E.D.G.E. Tool. It will allow the developer to switch between
different . XML libraries of entities as well as to create new libraries if
so desired.

The world file manager will allow the developer to load previous world
file data in order to update it in the world file editor, and to save current
world file data in the editor over an old world file or as a new world
file.

The fourth subcomponent is the world file editor, which is basically the
form that world file data is loaded into or typed into in order to set all
of the environment parameters for the simulation. Fields in this form
are: Name, ID, Bitmap Filepath, and the Entity List and Instance Data.
Name is the non-unique string that references the world and ID is the
unique identifier, which both work exactly as they do for entities and
materials. Bitmap Filepath is a string that points to the location of the
bitmap to be used for the world’s height map.

The complicated part of this structure is the Entity List and Instance
Data. There will be a list containing an entry for each entity to be
loaded into the simulation. If there are five instances of a single entity
known as “Rock” then there will be five entries labeled “Rock” in the
entity list. Each of these instances contains a reference to the entity data
as well as position information. Position information for a given entity
is set as follows: the developer chooses an entity from a list created by
the entity library loader. This entity is then added to the entity list. The
developer may then either enter position information directly into the
entity list or may drag the entry over to the bitmap editor. At this point
the mouse cursor will be a small point. When the mouse button is
released the entity’s position information will be updated to the bitmap
position the mouse is located at. The vertical position of the entity will
be set to ground level by default, but the developer may change this at
his or her discretion. The most likely GUI structure for the entity list
will be an advanced list box that allows entries to have subentries and
that will allow editing of both entries and subentries.

44

Section 3 - Detailed Design Document

Window and State Management Framework : Module #4

53
@

o

nput:

Method:
Description:

C++ Framework

User input

Changes state switch

Coded in C++.

The framework for this simulation is an adaptation of the Direct3D
Application Framework class (CD3DApplication) combined with a
small amount of functionality from the GDI portion of the Win32 APL
The rest of the framework is composed of switch statements that allow
easy state control using a global variable and housekeeping DirectX
function calls.

Debugging Console : Module #5

Input:
Output:
Method:

Description;

C++ Class and Functions

User input, global world data

Debugging data to screen

Coded in C++.

The debugging console is a tool primarily used by the programmer of a
project, but which has its uses once the project is released. For this
project, the debugging console will be accessible at runtime by a user
by pressing a key (most likely ‘~’) and then typing in commands at the
prompt at appears. The debugging console will be a semi-transparent
screen that will take up the top quarter of the screen. Commands that
will be programmed into the console will most likely be commands that
imitate normal user actions as well as commands that output object data
so that it may be examined at runtime. There may be some useful end-
user functionality that can be added to the console at a later date, but
there are no such plans for such features in the foreseeable future.

Data Loading : Module #6

Type:

Input:
Qutput:
Method:
Description:

C++ Class and Functions

XML Files

Global world data

Coded in C++,

This series of functions will load the data from the material and entity
XML files, as well as the data from the world file, into memory. This
does not include any data that may be directly accessed from the XML
databases during runtime (specific data TBA). Most, if not all, of this
data will be stored in the world class and its substructures.

User Input : Module #7

Type:
Input:
Output:
Method:

Description:

C++ Classes and Functions

User input

Control for state switching, camera position, and console commands
Coded in C++.

While some of the user’s input may be handled through Win32 API
functionality, it will be more centralized if this functionality is
encapsulated in keyboard and mouse classes. Both of these classes will
deal with DirectInput in order to adapt to whatever peripherals the user
may use. The sole purpose of this module is the aforementioned
encapsulation and centralization.

Section 3 - Detailed Design Document 45

Text Manipulation and Display : Module #8

Type:
Input:
Output;
Method:

Description:

C++ Utility Functions

Strings from screen classes

Text to screen

Coded in C++,

These independent utility functions will encapsulate DirectX’s text
drawing functions in order to make the placement of text easier. The
including of text positioning based on the size of the rendered text is
the primary concern of this module.

Screen Management : Module #9

Description:

Camera : Module #10

=l
E

t
ut:
Method:

Description:

C++ Classes and Functions

State control switch

Screens and menus displayed to screen, calls to text manipulation
Coded in C++.

This set of classes will systematically create and destroy screens as
needed. A screen consists of a background as well as menu options
consisting of text displayed through the screen (courtesy of the Text
Manipulation module) and connections to functionality elsewhere in
the program. Therefore a screen is anything from a plain screen that
displays text until it is clicked upon to a menu listing several options of
how the user can proceed. This module receives its instructions from
the Framework Module which has to handle pausing and resuming the
simulation during screen display.

C++ Class and Functions

User input, collision detection

Updates the region of terrain and entities rendered to the screen
Coded in C++.

The camera class represents the point at which the user is looking into
the simulated world. This means the camera has to know its angle (both
vertical and horizontal), its position in three dimensions, as well as its
viewing distance. The camera will move as the user directs it since the
camera is for all intents and purposes the eyes of the character the
simulation which the user is looking through. This class will use
collision detection functions in order to prevent the character from
existing in the same location as an entity or the terrain itself.

Terrain Rendering : Module #11

Input:

Qutput:
Method:

Description:

C++ Class and Functions

Global world data (geometry), camera information

Render terrain to screen

Coded in C++.

The terrain renderer is responsible for converting the bitmap height
map referenced in the world file into a three dimensional terrain. The
two aspects of designing this module is the algorithm used in breaking
the terrain into segments for efficient creation and display, and the
actual rendering of the terrain. For this project, the terrain will be
broken into simple strips unless time permits a more complex technique
to be used, and then each of these strips will be rendered separately.

46

Section 3 - Detailed Design Document

Graphics / Rendering Pipeline : Module #12

Description:

C++ Classes and Functions

Global world data (geometry), camera information, collision detection
Render entities to screen

Coded in C++.

The graphics pipeline is responsible for storing the geometry of the
entities to be rendered and actually rendering the information to the
display. There are many classes that represent different geometrical
data for rendering ranging in complexity from a single pixel point to a
three dimensional mesh. These classes are detailed in section 2.1.12.
Most of the classes and functionality for this module is adapted from
preexisting code created by Peter Walsh, author of The Zen of

Direct3D Game Programming,.

Collision Detection : Module #13

Description:

C++ Utility Functions

Global world data (geometry)

Boolean tests on collision sent to the graphics pipeline

Coded in C++.

The collision detection module will be a series of functions that will
accept geometry data and determine whether various objects have
collided. The collisions to detect are PC to terrain, entity to terrain,
entity to entity, and PC to entity. The types of collisions are face to face
collisions, point to point collisions, and face to point collisions. Due to
time constraints the only collisions that are to be implemented are PC-
to-terrain and Entity-to-Terrain, with the latter being of a limited
nature.

48 Section 3 - Detailed Design Document

2. Detailed Module Information
2.1. Detailed Class Diagrams (by Module)

The following diagrams are broken up as follows: the class name is in its own cell, in bold; the
class variables are listed in the middle row to the format “name : type”; and all function names
are listed in the last row of the diagram (sans any parameters).

2.1.1. Material Editor

The Material Editor consists of a single class that represents the GUI form and all of its
functionality, which is used to make .mlIb XML files. Detailed information on all listed

functions can be found in section 2.3.1 of this document.

frmMain

stFilePathAndName : String
stFileNameOnly : String
xDoc : DOMDocument
Nodes : IXMLDOMNodeList
NewMatType : Integer
NewComType : Boolean

LoadXMLFile()
NewXMLFile()
DeleteXMLFile()
OnMaterialSelect()
OnComponentSelect()
CalcComMass()
CalcCompFriction()
GetMaterialNameFromID()
GetNodeFromID()
ParseNameFromString()
ParselDFromString()
ExitProgram()
NewMaterial()

ClearForm()
ClearMaterialListSelections()
SaveMaterial()
IsFileLoaded()
RecalcMaxID()

CheckProperSyntaxtandard()
CheckProperSyntaxCombo()
DeleteMaterial()
DeleteNodeByID()
RefreshMaterialListBox()
RefreshComponentListBox()
GetDependencies()
SetMateriaiListboxFocus()
ClearComponentListSelections()
New Component()
SaveComponent()
DeleteComponent()
ListinvalidCombinationMaterials()
DisableObjectsBeforeLoad()
EnableObjectsAfterLoad()
ClearAll()
SetComponentListboxFocus()

Section 3 - Detailed Design Document 49

2.1.2. E.D.G.E. Tool (Entity Dynamic Generation Environment)

The EDGE Tool consists of a single class that represents the GUI form and all of its
functionality, which is used to make .elb XML files. Detailed information on all listed

functions can be found in section 2.3.2 of this document.

frmMain

stFilePathAndName : String
stFileNameOnly : String
stMatFilePathAndName : String
stMatFileNameOnly : String
xDoc : DOMDocument
xDocMat : DOMDocument
Nodes : IXMLDOMNodeList
MatNodes : IXMLDOMNodeList
bNewEntity : Boolean

dxD3DX : Direct3D.D3DX
dxDevice : Direct3D.Device
dxMesh : Direct3D.Mesh
oWidth . Double

oHeight : Double

oDepth : Double
bFreezeAdjust : Boolean
bFreezeAdjustAll : Boolean

frmMain_Load()
ExitProgram()
LoadXMLFile()
NewXMLFile()
DeleteXMLFile()

ClearAll)
RefreshEntityListBox()
RefreshMaterialListBox()
ChangeObjectsAfterLoad()
DisableCommandsOnDelete()
LoadMaterialXMLFile()
RecalcMaxID()
ClearEntityListSelections()
ClearMaterialListSelections()
GetNodeFromID()
DeleteNodeByID()

GetEntityNameFromID()
ParseNameFromString()
ParselDFromString()
NewEntity()

SaveEntity()
DeleteEntity()
OnMatSelect()
OnEntitySelect()
LoadMesh()
LoadMeshValues()
SetOriginalDimensionsForMesh()
SetMaterial()
SetEntityListboxFocus()
Height_TextChanged()
Width_TextChanged()
Depth_TextChanged()

50 Section 3 - Detailed Design Document

2.1.3. W.LLM. Tool (World Instance Manager)

The WIM Tool is composed of multiple GUI forms and several classes containing their
functionality. The WIM Tool is used to produce .wid XML files as well as height-map
bitmaps. Detailed information on all listed functions can be found in section 2.3.3 of this
document.

frmMain

stFilePathAndName : String
stFileNameOnly : String
stEntFilePathAndName : String
stEntFileNameOnly : String

xDoc : DOMDocument
xDocEntity : DOMDocument
Nodes : IXMLDOMNodelList
EntityNodes : IXMLDOMNodelList
LocalEntityNodes : IXMLDOMNodeList
UserNode : IXMLDOMNode
BitmapNode : IXMLDOMNode
bNewLocalEntity : Boolean

F2 : frmFilename

F3 : frmBitmap

objBitmap : Public Bitmap
GBitmapFilename : Public String

ExitProgram() DeleteNodeByCoor()
LoadXMLFile() GetEntityNameFromCoor()
NewXMLFile() ParseNameFromString()
DeleteXMLFile() ParselDFromString()
SaveXMLFile() ParseCoorFromString()
ClearAll() LoadEntityLibrary()
ClearLocalEntity() OnEntitySelect()
DisplayWorldData() UseEntity()
ChangeObjectsAfterLoad() OnLocalEntitySelect()
DisableCommandsOnWorldDelete() |NewLocalEntity()
RefreshEntityListBox() Savel ocalEntity()
RefreshLocalEntityListBox() DeleteLocalEntity()
ClearEntityListSelections() NewBitmap()
ClearLocalEntityListSelections() LoadBitmap()
SetLocalEntityListboxFocus() OpenBitmapEditor()
GetNodeFromCoor() SaveBitmap()

Section 3 - Detailed Design Document 54

W.I.M. Tool (World Instance Manager) DCD (Continued)

frmFilename CursorFactory Coor
GFilename : Textbox None X . Integer
y : Integer

Accept() LoadCursorFromFile() None
Cancel() Create()
frmBitmap BitmapManipStruct bitmap_manip
OffsetX : Integer BitmapBytes : Byte None
OffsetY : Integer nStride : Integer
X Integer TheBitmap : Bitmap
Y : Integer BitmapData : BitmapData

nTotalSize : Integer
OnFormLoad() Lock() TFInvertBitmap()
CloseBitmapEditor() Unlock() TFWhitePixel()
MouseMovesOverBitmap() TFWriteNoisePixel()
MouseEntersBitmap() TFWritePixel()
MouseExitsBitmap() TFCircleTool()
MouseClickOnBitmap()
ChangeSensitivity()
PerlinNoise()
SubdivideDisplace()
SDHelper()

52 Section 3 - Detailed Design Document

2.1.4. Window and State Management Framework

This is the central portion of code for the entire simulator. The global data members and
functions that belong to this module are used to control most of the interactions between
the other modules, as well as directly controlling the actual flow of information both in
memory and visually to the user.

Independent Variable and Function List

g_bActive : Boolean g_SavedPresParams : 1
g_DeviceHeight : Integer D3DPRESENT_PARAMETERS |
g_DeviceWidth : Integer g_hWndMain : HWND :
g_nStateFlag : Integer g_hlnstMain : HINSTANCE |
g_bShowFPS : Boolean g_pDI! : LPDIRECTINPUTS8 l
g_bShowCameralLoc : Boolean g_dwTerrainColor : DWORD i
g_LightCounter : static UINT g_dwTerrainWireColor : DWORD ‘
g_bConsoleOn : Boolean g_pBackground : w
g_bPauselock : Boolean LPDIRECT3DSURFACES? ;‘
g_fCameraSpeed : Float g_pBackSurface : I
g_fCameraYaw : Float LPDIRECT3DSURFACE9 |
g_bCameralocked : Boolean g_pDefaultTexture : X
g_bTerrainLoaded : Boolean LPDIRECT3DTEXTURES® :
g_pD3D : LPDIRECT3D9 g_pCursorSurf : !
g_pDevice : LPDIRECT3DDEVICES LPDIRECT3DSURFACES ‘
WndProc() SimRender() g
WinMain() SimCleanup()]
Siminit() ConsoleParser() ’
InitScene() Initializelnput() |
DestroyScene() Shutdownlnput()
SimLoop() GetWIDFileNames() i
Handlelnput()

Section 3 - Detailed Design Document 53

2.1.5. Debugging Console

The console consists of a primary class (CConsole), classes representing lines of text in
the console and parsed commands (CEntry and CCommand respectively), and global

functions that allow the console to display text to the screen.

CConsole

m_blnitialized : Boolean
m_Width : Integer
m_Height : Integer
m_pConsoleSurface :
LPDIRECT3DSURFACES

LPDIRECT3DSURFACES
m_pTargetSurface :
LPDIRECT3DSURFACES

m_pConsoleBackgroundSurf :

m_pDevice :

LPDIRECT3DDEVICES
m_bVisible : Bool
m_pActiveEntry : CEntry *
m_pEntryList : CEntry *
m_pfnCallback :

Function Pointer
m_bParserCallback : Boolean
_instance : static CConsole *

Instance()
CConsole()
~CConsole()
Shutdown()
Initialize()
Render()
GetVisibility()
SetVisibility()

OutputString()

Clear()

OnChar()

OnKeyDown()
SetParserCallback()
PreParse()
ParseStringForNumber()

RotateEntries()

Independent Variable and
Function List (FontEngine)

CEntry

CCommand

g_AlphabetWidth : Integer
g_AlphabetHeight : Integer
g_AlphabetlLetterWidth :
Integer
g_AlphabetLetterHeight :
Integer
g_AlphabetLettersPerRow :
Integer
g_pAlphabetSurface :
LPDIRECT3DSURFACES9
g_bAlphabetLoaded : Boolean

m_pstrText : char *
m_pNext : CEntry *
m_nVerticalPos : Integer

pstrCommand : char *
NumParams : Integer
pstrParams : char *

LoadAlphabet() CEntry()
UnloadAlphabet() ~Centry()
PrintChar() RenderText()
PrintString() GetNext()
SetNext()

OnChar()

GetText()
SetText()
GetTextLength()
SetVerticalPos()
GetVerticalPos()

CCommand()
~CCommand()

54 Section 3 - Detailed Design Document

2.1.6. Data Loading

The WorldSingleton class is the container for all data created using the three Visual Basic
development tools. All of this information, stored in XML files, is pulled into the
WorldSingleton class using its member functions and assistant structures.

CWorldSingleton

_instance : static WorldSingleton *
sWorldName : String
sBitmapFilename : String
TheUser : User

IstLocalEntities : list<LocalEntity *>
HeightMap : BYTE *
ByteRowWidth : Long Integer

WorldSingleton() LoadBitmap()

~ WorldSingleton() BTS()

Instance() STB()
LoadWIDFile() StringTolnt()
LoadEntityData() StringToDouble()
LoadMaterialData()

LocalEntity Struct User Struct

name : String x : Integer

X, Y, z: Integer y : Integer
roll : Double z . Integer
pitch : Double roll : Double
yaw : Double pitch : Double
eid, mid : Integer yaw : Double
elib, mlib : String

xfile : String

immobile : Boolean
height : Double
width : Double
depth : Double
mass : Double
friction : Double
xmesh : CZenMesh

Section 3 - Detailed Design Document §5

2.1.7. User Input

There are two classes used for user input, one for each of the primary devices. The
keyboard class allows the program to test for key presses while the mouse class not only
tests for mouse activity but also allows the display of a custom mouse cursor.

CZenMouse CZenKeyboard
m_pMouseDev : m_pKeyDeyv :
LPDIRECTINPUTDEVICES LPDIRECTINPUTDEVICES
m_binitialized : Boolean m_KeyBuffer[256] : char
m_bShowCursor : Boolean m_blnitialized : Boolean

m_MouseData : DIMOUSESTATE |_instance : static CZenKeyboard *
m_position : POINT
_instance : static CZenMouse *

CZenMouse() CZenKeyboard()

~ CZenMouse() ~ CZenKeyboard()
Initialize() Initialize()

Poll() IsKeyDown()
GetMousePos() Instance()
IsButtonDown()
HandleSetCursor()
ShowCursor()
GetCursorPosition()
SetCursorPosition()
MoveCursor()
UpdateCursorPos()
Instance()

56

Section 3 - Detailed Design Document

2.1.8. Text Manipulation and Display

The sole class used in text manipulation and display is CZenFont. This class doesn’t deal
with the placement of text on the screen, but the proper display of it. Text placement is
handed within module #9, Screen Management.

CZenFont

m_FontColor : D3DCOLOR
m_OrigColor : D3DCOLOR
m_Align : Integer
m_pFont : LPD3DXFONT
m_blnitialized : Boolean

CZenFont() RestoreColor()
~CZenFont() OutputText()
Initialize() GetBoundingBox()
SetColor() GetPtrToSelf()

Section 3 - Detailed Design Document 57

2.1.9. Screen Management

The primary screen management class, Screen, represents a single screen visible to the
user. The Text class creates objects that represent a single line of text and its formatting.
The final class, fontbank, is used to store font formats so that they do not have to be
destroyed and recreated every time the text is displayed to the screen.

Text Screen Fontbank

m_nID : Integer m_lIstScreenText : m_Fonts :

m_Font . CZenFont list<Text> vector<CZenFont>
m_pTextString : char * _instance : _instance :

m_x : Integer static Screen * static Fontbank *

m_y : Integer
m_pfnFuncPtr

VoidFuncPtr
m_pfnWorldFuncPtr :

WorldFuncPtr
sWoridFilename : String
Text() Screen() Fontbank()
Text(5 params) ~Screen() ~Fontbank()
~Text() Instance() Instance()
Text(copy constructor) Clear() AddFont()
operator = () SetText() GetFont()
SetAttributes() SetFunc()
GetlD() GetTextList()
SetFuncPtr() SetWorldFunc()
GetFuncPtr() SetWorldFile()
SetWorldFuncPtr()
GetWorldFuncPtr()

SetWorldFile()
GetWorldFile()
GetFontPtr()
GetTextPtr()
GetX()

GetY()
Render()

58 Section 3 - Detailed Design Document

2.1.10.Camera

This relatively simply utility class is a wrapper for manipulations of the Direct3D
transformation matrix, which controls where in simulated space the ‘camera’ or ‘user’ is
seeing from.

CZenCamera

m_Roll : Float

m_Pitch : Float

m_Yaw : Float

m_position : D3ADXVECTOR3
m_LookAt : D3DXVECTOR3
m_Up : D3ADXVECTOR3
m_Right : D3DXVECTOR3
m_Velocity : D3DXVECTOR3
instance : static CZenCamera *

CZenCamera() Update()

CZenCamera(copy) |Move()

~CZenCamera() SetRolK)

SetUp() GetRoll()

GetUp() SetPitch()

SetRight() GetPitch()

GetRight() SetYaw()

SetVelocity() GetYaw()

GetVelocity() Reset()

SetPosition() Render()

GetPosition() GetSize()

SetLookPaint() Instance() |
GetLookPoint() |

Section 3 - Detailed Design Document

2.1.11.Terrain Rendering

There are few functions in TerrainSingleton, but each of them are critical to the
simulation as a whole. This class contains the transformed .wid data that represents the
terrain, and is responsible for rendering and allowing access to information about the
terrain.

TerrainSingleton

zvVertex : CZenVertex [500][500]

blsEmpty : Boolean

pVB : LPDIRECT3DVERTEXBUFFERS [499]
_instance : static TerrainSingleton *

TerrainSingleton()

~ TerrainSingleton()
CreateVertexBuffer()
Render()
GetHeight()
Instance()

59

60 Section 3 - Detailed Design Document

2.1.12.Graphics / Rendering Pipeline

The classes used to store graphical information and to render them represent the various
geometries that are necessary: vertices, individual faces, and meshes among others. This
module also contains functions that deal with timing, 2D graphics, and lighting.

Global Graphic and Timing [CZenVertex CZenObject
Functions and Variables
g_Frequency : Integer m_Position : D3ADVECTOR |m_strName : char *
g_FrameCount : Integer m_Normal : D3DVECTOR |m_pParentFrame : void *
g_FrameRate : Integer m_DiffuseColor : m_pNext : CZenObject *
g_FrameDeviance : Float D3DCOLOR
m_SpecularColor :
D3DCOLOR
m_tu : Float
m_tv : Float
LoadBitmapToSurface() CZenVertex() CZenObject()
InitTiming() CZenVertex(copy) CZenObject(copy)
Pause() ~CZenVertex() ~ CZenObject()
GetNumTicksPerMs() Set() Render()
FrameCount() SetNext()
SetAmbientLight() GetNext()
GetParentFrame()
SetParentFrame()
GetSize()
CZenFace CZenMaterial CZenMesh
m_Vertices : CZenVertex[3] |m_Material : m_NumMats : Integer
m_pTexture : D3DMATERIALS m_pMesh : LPD3DXMESH
LPDIRECT3DTEXTURES m_pTextures :
m_bTextureSet : Boolean LPDIRECT3DTEXTURES *
m_pMaterials :
CZenMaterial *
CZenFace() CZenMaterial() CZenMesh()
CZenFace (copy) ~ CZenMaterial() CZenMesh(copy)
~ CZenFace () SetDiffuse() ~ CZenMesh()
SetProps() SetSpecular() LoadXFile()
SetTexture() SetAmbient() Render()
Render() SetEmissive() SetMaterial()
GetSize() Update() GetSize()
GetMesh()

Section 3 - Detailed Design Document

Graphics / Rendering Pipeline Module DCD (Continued)

CZenFrame

CZenLight

m_pParameter : void *

m_mLocal : D3DXMATRIX

m_vPosition : D3DXVECTOR3

m_vVelocity : D3DXVECTOR3

m_Yaw : Float

m_Pitch : Float

m_Roll : Float

m_pObjectList : CZenObject *

m_pNext : CZenFrame *

m_pChildFrameList : CZenFrame *

m_pParentFrame : CZenFrame *

m_pfnCallback :
FRAME_MOVEMENT_CALLBACK

m_bCallback : Boolean

m_Light : D3DLIGHT9
m_ID : Integer
m_blisOn : Boolean

CZenFrame()
~ CZenFrame()
SetCallback()
GetVelocity()
SetVelocity()
GetPosition()
SetPosition()
GetLocal()
GetYaw()
SetYaw()
GetPitch()
SetPitch()
GetRoll()
SetRoll()
Update()
AddObject()
Render()
SetNext()
GetNext()
AddFrame()
SetParent()
GetParent()

CZenLight()
CZenLight(copy)
~ CZenLight()
SetDiffuse()
SetSpecular()
SetAmbient()
Enable()

IsOn()

Render()
GetSize()

61

62 Section 3 - Detailed Design Document

2.1.13. Collision Detection

The collision detection module contains all of the functions necessary to add in realistic
physics to the simulation. Due to time restrictions, there is not a lot of content in this
module. The functions that are here relate to the implementation of simple gravity for
both the user and entities in the environment.

Module Functions and Variables

g_bCameraHitGround : Boolean
g_dJumpVelocity : Double
g_dGravityFactor : Double
g_dGravity : Double

CameraJump()
CameraGravity()
FindHighestTerrainVertex()
EntityGravity()

Section 3 - Detailed Design Document 63

2.2. Detailed Data Dictionary

The data dictionary has been moved here from the SPMP. This dictionary lists formats and data
types. Of particular interest, this section fully details the file data formats, examples of which
can be found in Appendix A of this document. (Note: ellipses in the ‘format’ section denote that
more than one instance of the previous tag may follow.)

Material Library XML File (.mlb)

Format:

<?xml version="" encoding=""?>

<materiallist maxID="">

<material ID="" name="" mass="" friction=""/>
<combo ID="" name="">
<component ID="" percent=""/>
</combo>
</materiallist>
Tags:
Name Description
xml Holds information about the format of the data file.
materiallist Container flag denoting the beginning and end of the material nodes.
Also keeps track of the identification numbers for these data nodes.
material Contains information about a single material.
combo Container flag denoting a material derived from existing materials.
component Contains information about one component of the parent combination
material.
Attributes:
Name Description
xml:version The version of XML being used.
xml:encoding The specific formatting of the XML document.

U materiallist:maxID This represents the last integer used to identify a material.
Used to choose identification numbers for new materials.

. material:1D This unique identification number is used for reference.

. material:name A material name is not unique and is used for convenience.

. material:mass A real number representing the mass of a single unit of this
material.

. material:friction A real number representing the coefficient of friction for this
material. While this isn’t the actual coefficient of friction, this
number allows a scale of frictionless to highly frictional to be
used.

* combo:ID This unique identification number is used for reference.

. combo:name A material name is not unique and is used for convenience.

. component:1D This references the material being included as a component.

U component:percent From ! to 100, this integer is how much of the combination

material is composed of the included material.

64 Section 3 - Detailed Design Document

Entity Library XML File (.elb file)

Format:
<?xml version="" encoding=""?>
<entitylist maxID="">
<entity ID="" name="">
<mlib></mlib>
<mID></mID>
<xfile></xfile>
<immobile></immobile>
<size height="" width="" depth="" keepratio="" />
</entity>
</entitylist>
Tags:
Name Description
. xml Holds information about the format of the data file.
. entitylist Container flag denoting the beginning and end of the entity nodes. Also
keeps track of the identification numbers for these data nodes.
. entity Contains information about a single entity.
. mlib The name of the .mlb file containing the entity’s material.
. mID The entity’s material ID.
. xfile The name of the .x file, where the 3D mesh is stored.
. immobile This flag denotes whether an entity can move or not. (0 or 1)
. size Render size attributes of the entity.
Attributes:
Name Description
. xml:version The version of XML being used.
. xml:encoding The specific formatting of the XML document.
. entitylist:maxID This represents the last integer used to identify an entity. Used
to choose identification numbers for new entities.
. entity:ID This unique identification number is used for reference.
. entity:name An entity name is not unique and is used for convenience.
. mlib:TEXT See tag description.
. mID: TEXT See tag description.
. xfile: TEXT See tag description.
. immobile:TEXT See tag description.
. size:height A double representing the height of the entity’s 3D mesh.
. size:width A double representing the width of the entity’s 3D mesh.
. size:depth A double representing the depth of the entity’s 3D mesh.
. size:keepratio Used in the EDGE tool in order to equalize the dimensions as

the user changes them.

Section 3 - Detailed Design Document 65

World Instance Data XML File (.wid file)

Format:

<?xml version="" encoding=""7?>

<world name="">

<locals>
<entity x="" y="" z="" roll="" pitch="" yaw=""
name="" eID="" elib=""/>
</locals>
<bitmap filename=""/>
<user x="" y="" z="" roll="" pitch="" yaw=""/>
</world>
Tags:
Name Description

) xm] Holds information about the format of the data file.

. world Container flag denoting the beginning and end of the world data.

. locals Container flag for the list of local entity instances.

. entity Information about a single local entity instance.

. bitmap Contains information about the terrain file.

. user The user’s initial position is stored here. (camera position)

Attributes:

Name Description

. xml:version The version of XML being used.

. xml:encoding The specific formatting of the XML document.

. world:name Used as a convenience reference for a world. Non unique.

. entity:x The x coordinate that the entity loads to.

. entity:y The y coordinate that the entity loads to.

. entity:z The z coordinate that the entity loads to.

. entity:roll This integer is the angle that the entity is rotated around the y-
axis (north-south direction). A change in roll causes the entity
to tilt to either side, as if leaning.

. entity:pitch This integer is the angle that the entity is rotated around the x-
axis (east-west direction). A change in pitch causes the entity
to face upwards or downwards instead of straight ahead.

. entity:yaw This integer is the angle that the entity is rotated around the z
axis (up-down direction). A change in yaw causes an entity to
turn left or right.

. entity:elD The identification number of the base entity.

. entity:elib The filename of the .elb library containing the base entity data.

. bitmap:filename The filename of the bitmap used for the terrain’s heightmap.

. user:x The x coordinate that the user loads to.

. user:y The y coordinate that the user loads to.

. user:z The camera’s (user’s) height above the terrain at all times.

. user:roll The ‘roll’ here is the same as ‘roll’ for entity.

. user:pitch The ‘pitch’ here is the same as ‘pitch’ for entity.

. user:yaw The ‘yaw’ here is the same as ‘yaw’ for entity.

66

Section 3 - Detailed Design Document

2.3. Detailed Function Library

Before browsing through the hundreds of function definitions on the following pages there are a
few important notes. The ‘Notes’ field is used to describe what a function does when the
function name and other information doesn’t make this obvious. Underlined headers precede
each class or group of functions. Constructors, copy constructors, and destructors are not listed.

2.3.1. Material Editor

frmMain Class Functions

LoadXMLFile
Input Parameters User selects an .mlb library in a dialog box.
Function Output N/A
Functions Referenced RefreshMaterialListBox, EnableObjectsAfterLoad, ClearAll,
RecalcMaxID
Notes XML data from an .mlb library is loaded and the editor is set
up for use.
NewXMLFile
Input Parameters User enters the filename for a new .mlb library.
Function Output N/A
Functions Referenced EnableObjectsAfterLoad, ClearAll
Notes An empty .mlb library is created.
DeleteXMLFile ‘
Input Parameters N/A ;
Function Output N/A |
Functions Referenced | DisableObjectsBeforeLoad, ClearAll |
Notes The currently loaded .mlb library is deleted from memory. \
OnMaterialSelect
Input Parameters N/A
Function Qutput N/A
Functions Referenced ClearComponentListSelections,ClearMaterialListSelections,
ParseIDFromString, GetMaterialNameFromID,
CalcComMass, CalcComFriction
Notes Handles the display of material information and the state of
text boxes based on what material is currently selected.

OnComponentSelect

Input Parameters N/A

Function Output N/A

Functions Referenced ClearComponentListSelections, ParseIDFromString,
ParseNameFromString

Notes Handles the display of component information and the state of
text boxes based on what component is selected.

CalcComMass

Input Parameters An IXMLDOMNode object.

Function Output A double, representing the mass.

Functions Referenced CalcComMass

Notes Calculates the mass of a material, recursively checking the
properties of any and all components.

Section 3 - Detailed Design Document 67

CalcComFriction

Input Parameters An IXMLDOMNode object.
Function Output A double, representing the friction.
Functions Referenced CalcComPFriction

Notes

Calculates the friction of a material, recursively checking
the properties of any and all components.

GetMaterialNameFromID

Input Parameters

A string containing a material ID.

Function OQutput

A string containing a material name.

Functions Referenced

N/A

Notes

N/A

GetNodeFromID

Input Parameters

A string containing a material ID.

Function Qutput An IXMLDOMNode object.
Functions Referenced N/A
Notes N/A

ParseNameFromString

Input Parameters

A string in the format “name ID”".

Function Output

A string containing the name only.

Functions Referenced

N/A

Notes

N/A

ParseIDFromString

Input Parameters

A string in the format “name ID”.

Function Output

A string containing the ID only.

Functions Referenced N/A
Notes N/A
ExitProgram

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Exits the program.

NewMaterial
Input Parameters N/A
Function Output N/A

Functions Referenced

IsFileLoaded, RecalcMaxID

Notes

Sets up the editor for the entry of a new material.

ClearForm

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Clears all text boxes and list boxes on the form.

68

Section 3 - Detailed Design Document

ClearMaterialListSelections

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Deselects any selection made in the material listbox.

SaveMaterial
Input Parameters N/A
Function Output N/A

Functions Referenced

IsFileLoaded, RefreshMaterialListBox,
SetMaterialListboxFocus, CheckProperSyntaxStandard,
DeleteNodeByID, RefreshMaterialListBox,
CheckProperSyntaxCombo

Notes Updates a currently selected material if changes have been
made in the editor, or saves a new material created in the
editor. '

IsFileLoaded

Input Parameters N/A

Function Output Boolean flag based on the function name.

Functions Referenced N/A

Notes N/A

CheckProperSyntaxStandard

Input Parameters N/A

Function Output Boolean flag based on the function name.
Functions Referenced N/A

Notes N/A

CheckProperSyntaxCombo

Input Parameters N/A

Function Qutput Boolean flag based on the function name.
Functions Referenced N/A

Notes N/A

DeleteMaterial

Input Parameters N/A

Function Qutput N/A

Functions Referenced

IsFileLoaded, GetDependencies, DeleteNodeByID,
RefreshMaterialListBox

Notes Deletes the currently selected material from the form and
from the library.

DeleteNodeByID

Input Parameters String containing a material ID.

Function Cutput N/A

Functions Referenced GetNodeByID

Notes N/A

RefreshMaterialListBox

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes

Refresh the contents of the material listbox.

Section 3 - Detailed Design Document 69

RefreshComponentListBox

Input Parameters

N/A

Function Qutput

N/A

Functions Referenced

GetNodeFromID, GetMaterialNameFromID

Notes

Refresh the contents of the component listbox.

GetDependencies

Input Parameters

An integer containing a material ID.

Function Output

An array passed by reference containing a list of all
materials that are dependant on the material referenced by
the ID.

Functions Referenced

GetMaterialNameFromID

Notes

N/A

SetMaterialListboxFocus

Input Parameters

A string containing a material ID.

Function Qutput N/A
Functions Referenced GetMaterialNameFromID
Notes N/A

ClearComponentListSelections

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Deselects all component in the component listbox.

NewComponent
Input Parameters N/A
Function OQutput N/A

Functions Referenced

IsFileLoaded, ClearComponentListSelections

Notes

Sets up the editor for the entry of a new component.

SaveComponent
Input Parameters N/A
Function Output N/A

Functions Referenced

IsFileLoaded, GetNodeFromID, ParseNameFromString,
ParseIDFromString, RefreshComponentListBox,
SetComponentListboxFocus

Notes Updates an existing component that had been changed in
the editor or saves a new component created in the editor.

DeleteComponent

Input Parameters N/A

Function Output N/A

Functions Referenced

IsFileLoaded, GetNodeFromID, ParseIDFromString,
RefreshComponentListBox

Notes

Deletes the currently selected component.

ListInvalidCombinationMaterials

Input Parameters N/A
Function OQutput N/A
Functions Referenced N/A

Notes

A message box appears and lists any combination material
with components that do not add up to 100%.

70 Section 3 - Detailed Design Document

DisableObjectsBeforeLoad

Input Parameters N/A

Function Qutput N/A

Functions Referenced N/A

Notes Disables almost all fields and buttons when there’s no
library present.

EnableObjectsAfterLoad

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes Enables a couple of buttons after a library is loaded.

ClearAll

Input Parameters N/A

Function Qutput N/A

Functions Referenced N/A

Notes Clears all of the editor’s fields at once.

SetComponentListboxFocus

Input Parameters A string containing a material name and ID.

Function Output N/A

Functions Referenced N/A

Notes Selects the appropriate component in the component
listbox.

RecalcMaxID

Input Parameters N/A

Function Qutput N/A

Functions Referenced N/A

Notes Resets the maxID attribute of the loaded material library to

the smallest possible correct value to prevent it from
ballooning out of control from deleted and discarded
materials.

frmMain Class Functions

Section 3 - Detailed Design Document 71

2.3.2. E.D.G.E. Tool (Entity Dynamic Generation Environment)

frmMain Load

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Sets up the Direct3D Device when the form loads.

ExitProgram

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Exits the program.

LoadXMLFile

Input Parameters

User selects an .elb library in a dialog box.

Function Qutput

N/A

Functions Referenced

ClearAll, RefreshEntityListBox, ChangeObjectsAfterLoad,
RecalcMaxID

Notes

XML data from an .elb library is loaded and the editor is
set up for use.

NewXMULFile

Input Parameters

User enters the filename for a new .elb library.

Function Output

N/A

Functions Referenced

ClearAll, RefreshEntityListBox, ChangeObjectsAfterLoad

Notes

An empty .elb is set up for use.

DeleteXMLFile
Input Parameters N/A
Function Output N/A

Functions Referenced

ClearAll, DisableCommandsOnDelete

Notes

Deletes the currently loaded .elb library from memory.

ClearAll

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Resets all of the text boxes and lists in the form.

RefreshEntityListBox

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Refresh the contents of the Entity list box.

RefreshMaterialListBox

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Refresh the contents of the Material list box.

72

Section 3 ~ Detailed Design Document

ChangeObjectsAfterLoad

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Disables and enables commands once a .elb is loaded.

DisableCommandsOnDelete

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Resets the form to its initial state when an entity library is
unloaded and deleted.

LoadMaterial XMLFile

Input Parameters

N/A

Function Output

N/A

Functions Referenced

RefreshMaterialListBox

Notes Loads a material library into the editor and lists its
contents in a list box.

RecalcMaxID

Input Parameters N/A

Function Cutput N/A

Functions Referenced N/A

Notes

Recalculates the highest ID used so that the smallest free
ID is used on the next entity created.

ClearEntityListSelections

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Deselects all entries on the entity list.

ClearMaterialListSelections

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Deselects all entries on the material list.

GetNodeFromID

Input Parameters

A string containing an entity ID.

Function Output

An IXMLDOMNode object.

Functions Referenced N/A
Notes N/A
DeleteNodeBylID

Input Parameters

A string containing an entity ID.

Function Quiput N/A
Functions Referenced GetNodeByID
Notes N/A

Section 3 - Detailed Design Document 73

GetEntityNameFromID

Input Parameters

A string containing an entity ID.

Function Output

A string containing the name of the entity.

Functions Referenced

N/A

Notes

N/A

ParseNameFromString

Input Parameters

A string in the format “name ID”.

Function Qutput

A string containing the name only.

Functions Referenced

N/A

Notes

N/A

ParseIDFromString

Input Parameters

A string in the format “name ID”.

Function Output

A string containing the ID only.

Functions Referenced N/A
Notes N/A
NewEntity

Input Parameters N/A
Function Output N/A

Functions Referenced

ClearEntityListSelections

Notes

The form is set up for the entry of a new entity.

SaveEntity

Input Parameters N/A

Function Output N/A

Functions Referenced DeleteNodeByID, RefreshEntityListBox,
SetEntityListboxFocus,

Notes Saves the entity to file if it is a new entity, otherwise it
updates an existing entity entry with new information.

DeleteEntity

Input Parameters N/A

Function Output N/A

Functions Referenced

DeleteNodeByID, RefreshEntityListBox, ClearAll

Notes

Deletes the currently selected entity and clears the form.

OnMatSelect

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Enables and disables the ‘Set Material’ function.

OnEntitySelect
Input Parameters N/A
Function Qutput N/A

Functions Referenced

ClearEntityListSelections, ParseIDFromString,
SetOriginalDimensionsForMesh

Notes

Displays the appropriate information when an entity is
selected in the entity list box.

74

Section 3 - Detailed Design Document

LoadMesh

Input Parameters The user selects an .x file from memory.
Function Output N/A

Functions Referenced LoadMeshValues

Notes

This is a wrapper function for the core functionality stored
in LoadMeshValues().

LoadMeshValues

Input Parameters

A string with the .x mesh’s filename.

Function Output

N/A

Functions Referenced

SetOriginalDimensionsForMesh

Notes

Loads an .x mesh into memory in order to calculate its
bounding box.

SetOriginalDimensionsForMesh

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Stores a copy of an .x file’s original dimensions for aspect
ratio calculations.

SetMaterial

Input Parameters N/A

Function Output N/A

Functions Referenced ParseIDFromString
Notes Sets an entity’s material.

SetEntityListboxFocus

Input Parameters

A string containing an entity ID.

Function Output N/A
Functions Referenced GetEntityNameFromID

Notes

Focuses on the given entity in the entity list box.

Height TextChanged

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Aspect ratio code for one of the mesh’s dimensions.

Width TextChanged

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Aspect ratio code for one of the mesh’s dimensions.

Depth_TextChanged

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Aspect ratio code for one of the mesh’s dimensions.

Section 3 - Detailed Design Document 75

2.3.3. W.LLM. Tool (World Instance Manager)

frmMain Class Functions

ExitProgram

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Closes down the WIM Tool.

LoadXMLFile

Input Parameters

User selects a .wid file in a dialog box.

Function Qutput

N/A

Functions Referenced

ClearAll, DisplayWorldData, ChangeObjectsA fterLoad

Notes

The information from a .wid file is loaded into the editor.

NewXMULPFile

Input Parameters

User enters the filename for a new .wid file.

Function Output

N/A

Functions Referenced

ClearAll, DisplayWorldData, ChangeObjectsAfterLoad

Notes

A blank .wid file is created and loaded into the editor.

SaveXMLFile

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Changes to the current .wid file are saved.

DeleteXMLFile
Input Parameters N/A
Function Output N/A

Functions Referenced

ClearAll, DisableCommandsOnWorldDelete

Notes

The currently loaded .wid file is deleted from memory.

ClearAll

Input Parameters N/A

Function Output N/A

Functions Referenced ClearLocalEntity

Notes

Clear the WIM Tool of all displayed content.

ClearLocalEntity

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

This clears the LocalEntity listbox.

DisplayWorldData

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Display all of the data from a recently loaded .wid file to
the screen.

76

Section 3 - Detailed Design Document

ChangeObjectsAfterLoad

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes Reset the state of the Tool’s commands when a file is
loaded.

DisableCommandsOnWorldDelete

Input Parameters N/A

Function Quiput N/A

Functions Referenced N/A

Notes Reset the state of the Tool’s commands when a file is
deleted.

RefreshEntityListBox

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes Refresh the entity listbox.

RefreshLocalEntityListBox

Input Parameters N/A

Function Qutput N/A

Functions Referenced N/A

Notes Refresh the local entity listbox.

ClearEntityListSelections

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A
Notes Deselect any selections on the entity listbox.

ClearLocalEntityListSelections

Input Parameters N/A
Function Quiput N/A
Functions Referenced N/A
Notes Deselect any selections on the local entity listbox.

SetLocalEntityListboxFocus

Input Parameters A Coor object containing the coordinates of a local entity.
Function Output N/A

Functions Referenced GetEntityNameFromCoor

Notes Select the specified object in the entity listbox.
GetNodeFromCoor

Input Parameters N/A

Function Output An IXMLDOMNode containing local entity information.
Functions Referenced N/A

Notes N/A

Section 3 - Detailed Design Document 77

DeleteNodeByCoor

Input Parameters

A Coor object containing the coordinates of a local entity.

Function Output

N/A

Functions Referenced

GetNodeFromCoor

Notes

N/A

GetEntityNameFromCoor

Input Parameters

A Coor object containing the coordinates of a local entity.

Function Output

A string containing the name of a local entity.

Functions Referenced

N/A

Notes

N/A

ParseNameFromString

Input Parameters

A string from the entity listbox.

Function Output

A string containing the name of an entity.

Functions Referenced

N/A

Notes

N/A

Parse]lDFromString

Input Parameters

A string from the entity listbox.

Function Output

A string containing the ID of an entity.

Functions Referenced

N/A

Notes

N/A

ParseCoorFromString

Input Parameters

A string from the local entity listbox.

Function Qutput

A Coor containing the location of a local entity.

Functions Referenced

N/A

Notes N/A

LoadEntityLibrary

Input Parameters User selects an .elb file in a dialog box.
Function Qutput N/A

Functions Referenced RefreshEntityListBox

Notes

The entity listbox is filled with the contents of the .elb file.

OnEntitySelect

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Enable the Use Entity command.

UseEntity
Input Parameters N/A
Function Qutput N/A

Functions Referenced

ParseNameFromString, Parse]l DFromString

Notes

Load the information from the entity selected in the entity
listbox into the appropriate local entity fields.

78

Section 3 - Detailed Design Document

OnLocalEntitySelect
Input Parameters N/A
Function Output N/A

Functions Referenced

ClearLocalEntityListSelections, ParseCoorFromString

Notes

Display the local entity’s information in the appropriate
fields.

NewLocalEntity

Input Parameters

N/A

Function Output

N/A

Functions Referenced

ClearLocalEntity, ClearLocalEntityListSelections

Notes

Sets up the editor to accept a new local entity.

SaveLocalEntity
Input Parameters N/A
Function Output N/A

Functions Referenced

DeleteNodeByCoor, RefreshLocalEntityListBox,
SetLocalEntityListboxFocus, ParseCoorFromString

Notes Saves a new local entity, or updates an existing local entity
that has had changes made.

DeleteLocalEntity

Input Parameters N/A

Function Qutput N/A

Functions Referenced DeleteNodeByCoor, RefreshLocalEntityListBox,
ClearLocalEntity

Notes Deletes the currently selected local entity from the .wid
file.

NewBitmap

Input Parameters N/A

Function Qutput N/A

Functions Referenced N/A

Notes

Creates a new blank bitmap and loads it into the editor.

LoadBitmap

Input Parameters

The user selects a .bmp file from a dialog box.

Function Output

N/A

Functions Referenced

N/A

Notes

Loads an existing bitmap into the editor.

SaveBitmap

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes Saves the current bitmap to file.
OpenBitmapEditor

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes Opens the bitmap editing form.

frmFilename Class Functions

Section 3 - Detailed Design Document 79

Accept

Input Parameters

N/A

Function Output

A string containing the filename for a new bitmap.

Functions Referenced

N/A

Notes

Returns the string that the user entered into the form.

Cancel

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Returns an empty string, ignoring any user input.

frmBitmap Class Functions

OnFormLoad

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Reset all of the form’s controls.

CloseBitmapEditor

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Close the bitmap editing form and returns to the main
WIM Tool screen.

MouseMovesOverBitmap

Input Parameters N/A
Function Qutput N/A
Functions Referenced MouseClickOnBitmap

Notes

Updates coordinate information as the mouse moves over
the bitmap. Also edits the bitmap if the appropriate tool is
selected and the proper mouse button is held down as the
mouse moves.

MouseEntersBitmap

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Changes the mouse cursor when it moves over the bitmap
to the appropriate tooltip.

MouseExitsBitmap

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Changes the mouse cursor when it leaves the bitmap to the
appropriate tooltip.

80

Section 3 - Detailed Design Document

MouseClicksOnBitmap
Input Parameters N/A
Function Output N/A

Functions Referenced

BitmapManipStruct: Unlock

Notes

Performs editing operations on the bitmap based on what
tool is currently selected.

ChangeSensitivity

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

This changes the strength of the editing tools, making them
increase and decrease the height map more drastically
when the sensitivity value is higher.

PerlinNoise
Input Parameters N/A
Function Qutput N/A

Functions Referenced

BitmapManipStruct: Lock, Unlock

Notes

This function was not implemented in the WIM Tool.

SubdivideDisplace
Input Parameters N/A
Function Qutput N/A

Functions Referenced

SDHelper, BitmapManipStruct: Lock, Unlock

Notes

This function generates random terrain using the Subdivide
and Displace method.

SDHelper

Input Parameters N/A
Function Output N/A
Functions Referenced SDHelper

Notes

This function performs much of the actual Subdivide and
Displace algorithm.

CursorFactory Class Functions

LoadCursorFromFile

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Loads a mouse cursor from a file into memory.

Create

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Creates the actual mouse cursor seen by the user.

Section 3 - Detailed Design Document 81

BitmapManipStruct Class Functions

Lock

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Locks the bitmap for editing.

Unlock

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Unlocks the bitmap. Used when the bitmap is no longer
being edited.

Bitmap_manip Module Functions

TFInvertBitmap

Input Parameters A BitmapManipStruct and two integers containing the size
of the bitmap.

Function Output N/A

Functions Referenced

BitmapManipStruct: Lock

Notes

This function inverts the color values of the entire bitmap
in a single click.

TFWhitePixel

Input Parameters

A BitmapManipStruct, two integers containing the size of
the bitmap, and two integers containing the local of the
mouse click on the bitmap.

Function Qutput

N/A

Functions Referenced

BitmapManipStruct: Lock

Notes

A white pixel is drawn to the bitmap at the specified
location.

TFWriteNoisePixel

Input Parameters

A BitmapManipStruct, two integers containing the local of
the mouse click on the bitmap, and a noise value stored in
a double.

Function Output

N/A

Functions Referenced

N/A

Notes

This function is not used anywhere since Perlin Noise was
left unimplemented.

TFWritePixel

Input Parameters

A BitmapManipStruct, two integers containing the local of
the mouse click on the bitmap, and the value to be written
stored in an integer.

Function Output

N/A

Functions Referenced

N/A

Notes

The value passed to the function is written to the bitmap at
the specified location.

82

Section 3 - Detailed Design Document

TFCircleTool

Input Parameters

A BitmapManipStruct, two integers containing the size of
the bitmap, two integers containing the local of the mouse
click on the bitmap, a Boolean indicating the direction of
the height change, and two integers representing the
strength of the height change and the radius of effect.

Function Output

N/A

Functions Referenced

BitmapManipStruct: Lock

Notes

This function determines which circle editing tool is
selected and performs adjustments to the bitmap based on
sensitivity settings as well as what mouse button is being
pushed.

Global Functions

Section 3 - Detailed Design Document 83

2.3.4. Window and State Management Framework

WndProc
Input Parameters N/A
Function Quiput N/A

Functions Referenced

Module #5 (CConsole) OnChar, OnKeyDown, Module
#7 (CZenMouse) Instance, HandleSetCursor

Notes This is an overload to the standard Windows function that
handles various types of input to the program. This
overload intercepts the user’s input to the console and the
use of the mouse.

WinMain

Input Parameters

Four standard parameters that are always passed to
WinMain.

Function Output

An integer indicating whether the program has exited with
or without error.

Functions Referenced

SimInit, SimLoop, SimCleanup

Notes

This is the main function for a windows-based program
and is similar to the standard main() function in C++. This
function is used to call the various simulator functions
when and where necessary.

SimInit
Input Parameters N/A
Function Output N/A

Functions Referenced

InitScene, Module #5: L.oad Alphabet, (CConsole)
Initialize, SetParserCallback, Module #7:
(CZenKeyboard) Instance, (CZenMouse) Instance,
ShowCursor, HandleSetCursor, Module #9: (FontBank)
Instance, AddFont, Module #10: Instance, SetPosition,
Module #12: InitTiming,

Notes N/A
InitScene

Input Parameters N/A
Function Qutput N/A

Functions Referenced

GetWIDFileNames, Module #6: (WorldSingleton)
Instance, Module #8: (CZenFont) GetBoundingBox,
Module #9: (FontBank) Instance, GetFont, (Screen)
Instance, Clear, SetText, SetFunc, SetWorldFunc,
SetWorldFile, Module #10: Instance, SetPosition, Module
#11: Instance, CreateVertexBuffer,

CreateElevated VertexBuffer, Module #12:

LoadBitmapToSurface
Notes N/A
DestroyScene
Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Clears the background image loaded for a given scene
when the scene changes.

84

Section 3 - Detailed Design Document

SimLoop
Input Parameters N/A
Function Output N/A

Functions Referenced

Handlelnput, SimRender, Module #12: FrameCount

Notes

Loops through the other core functions of the simulator.

Handlelnput
Input Parameters N/A
Function Output N/A

Functions Referenced

Module #7: (CZenKeyboard) Instance, IsKeyDown
(CZenMouse) Instance, Poll, UpdateCursorPos,
GetCursorPosition, IsButtonDown, Module #8:
GetBoundingBox, SetColor, RestoreColor, Module #9:
(Screen) Instance, GetTextList, (Text) GetFuncPir,
GetFontPtr, GetTextPtr, GetWorldFuncPtr, GetWorldFile,
GetX, GetY, Module #10: Instance, GetPosition,
SetPosition, GetVelocity, GetRight, Move, GetLookPoint,
SetYaw, Update, Module #11: Instance, GetHeight,
Module #13: CameraJump, CameraGravity

Notes Controls what happens when input is received from the
mouse or the keyboard.

SimRender

Input Parameters N/A

Function Output N/A

Functions Referenced

Module #5: Instance, PrintString, Render, Module #6:
Instance, Module #9: (Screen) Instance, GetTextList,

Render, Module #10: Instance, Module #11: Instance,
Render, GetHeight, Module #12: (CZenMesh) Render

Notes Renders all 2D and 3D objects that need to be rendered
based on the current state.

SimCleanup

Input Parameters N/A

Function Qutput N/A

Functions Referenced

DestroyScene, ShutdownInput, Module #5: Instance,
Shutdown, UnloadAlphabet

Notes

Cleans up memory when the simulator is shutting down.

ConsoleParser

Input Parameters

A CCommand object containing the line to be parsed.

Function Output

An integer indicating success.

Functions Referenced

Module #5: (Console) Instance, Clear, OutputString,
Module #6: Instance, Module #10: Instance, GetPosition,
Module #11: Instance

Notes

This function breaks apart the line input into the console
and performs the appropriate command based on the input.

Section 3 - Detailed Design Document 85

InitializeInput
Input Parameters N/A
Function Qutput N/A

Functions Referenced

Module #7: (CZenKeyboard) Instance, Initialize,
(CZenMouse) Instance, Initialize

Notes Initialize the variables used by the input procedures.
ShutdownlInput

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes

Clears variables related to the input objects.

GetWIDFileNames

Input Parameters N/A

Function Output A vector containing string objects.
Functions Referenced N/A

Notes

This function reads the filenames of all .wid files stored in
the local xml directory and stores them in a vector. This
text is retrieved in order to display it on a menu to the user.

86 Section 3 - Detailed Design Document

2.3.5. Debugging Console

Font Engine Global Functions

LoadAlphabet

Input Parameters

A character string containing the filename of the alphabet
image, and two integers representing the width and height
of each alphabet character.

Function Output

N/A

Functions Referenced

Module #12: LoadBitmapToSurface

Notes

Loads the alphabet bitmap into memory.

UnloadAlphabet

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Releases the surface the alphabet was loaded onto.

PrintChar

Input Parameters

Two integers representing the location the character should
be displayed at, the character itself, a Boolean value
indicating whether the character is transparent or not, the
color of the character, a pointer to the memory the
character is being written to, and an integer containing the
destination surface’s pitch value.

Function Output

A character is written to a surface.

Functions Referenced

N/A

Notes

Used to display a single bitmap character to the screen.

PrintString

Input Parameters

Two integers representing the location the string should be
displayed at, the string of characters, a Boolean value
indicating whether the text is transparent or not, the color
of the text, a pointer to the memory the character is being
written to, and an integer containing the destination
surface’s pitch value.

Function Qutput

A string of characters is written to a surface.

Functions Referenced

PrintChar

Notes

Used to display a series of bitmap characters to the screen.

CEntry Class Functions

RenderText

Input Parameters

An integer for the maximum string length, a pointer to the
memory to render the text to, and an integer containing the
destination surface’s pitch value.

Function Output

N/A

Functions Referenced

FontEngine: PrintString

Notes

Renders a line of console text to the display.

i
H
|
i
i
i
!
i
i
|
g

Section 3 - Detailed Design Document 87

GetNext

Input Parameters N/A

Function Output A pointer to the next CEntry.
Functions Referenced N/A

Notes N/A

SetNext

Input Parameters

CEntry pointer to the next row of text.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the CEntry text that follows the current CEntry.

GetText

Input Parameters

A char* that is filled up with the CEntry text and an
integer of how many characters to copy.

Function Output

N/A

Functions Referenced

N/A

Notes

Copies the CEntry test to the char*.

SetText

Input Parameters

A char* that is used to set the value of the CEntry text.

Function Qutput

N/A

Functions Referenced

N/A

Notes

N/A

OnChar

Input Parameters

A character representing what key was just pressed.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Adds appropriate characters to the buffer (CEntry text)
when a key is pressed.

GetTextLength

Input Parameters

N/A

Function Output

The number of characters in the string as an integer.

Functions Referenced

N/A

Notes N/A
GetVerticalPos
Input Parameters N/A

Function Output

The vertical position of the row of text as an integer.

Functions Referenced

N/A

Notes

N/A

SetVerticalPos

Input Parameters

An integer containing the y position for rendering.

Function Output

N/A

Functions Referenced

N/A

Notes

N/A

CConsole Class Functions

Section 3 - Detailed Design Document

Instance

Input Parameters N/A

Function Quiput A pointer to the Singleton CConsole object.
Functions Referenced N/A

Notes

Creates a CConsole object if it hasn’t been created yet and
returns a pointer, otherwise this function just returns the
pointer.

Shutdown
Input Parameters N/A
Function Output N/A

Functions Referenced

CConsole destructor

Notes

Empties the CConsole of all data.

SetParserCallback

Input Parameters

A function pointer to a parsing function.

Function Qutput N/A
Functions Referenced N/A
Notes N/A
Clear

Input Parameters N/A
Function Qutput N/A

Functions Referenced

CEntry: GetNext, SetNext

Notes

Clears the contents of all console CEntry text.

OnChar

Input Parameters

A character representing the key that was pressed.

Function Qutput

N/A

Functions Referenced

CEntry: OnChar

Notes

Interprets key presses as commands or as text entered into
the buffer.

OnKeyDown

Input Parameters

A representation of the key that was pressed.

Function Qutput

N/A

Functions Referenced

SetVisibility, OnChar, PreParse, OutputString,
RotateEntries. CEntry: GetText

Notes

This function handles non-character keyboard input for
special commands.

PreParse

Input Parameters

A character string from a command entered into the
console and a pointer to a CCommand object.

Function Output

N/A

Functions Referenced

N/A

Notes

The character string is split apart into the command name
and parameters and is then stored in the CCommand
object.

Section 3 - Detailed Design Document 89

QOutputString

Input Parameters

A character string and a Boolean.

Function Output

N/A

Functions Referenced

RotateEntries. CEntry: SetText

Notes

The character string is sent to the console. The Boolean
determines whether the string is simple output or a special
console message, and formats the output accordingly.

RotateEntries
Input Parameters N/A
Function Qutput N/A

Functions Referenced

CEntry: GetNext, GetVerticalPos, SetVerticalPos,
SetNext

Notes The lines of console text are all moved up a position to
make room for a new line at the bottom. If a line is moved
beyond the upper limit it is erased.

Initialize

Input Parameters

A D3D device pointer and a pointer to the surface the
console is to be rendered to.

Function Output

N/A

Functions Referenced

Shutdown. Module #12: LoadBitmapToSurface. CEntry:
GetNext, SetNext, SetVerticalPosition

Notes The console is initialized with starting values.
Render

Input Parameters N/A

Function Quiput N/A

Functions Referenced

FontEngine: PrintString. CEntry: GetNext, RenderText.

Notes

Renders the console and its text to the display.

ParseStringForNumber

Input Parameters

A character string.

Function Output

An integer.

Functions Referenced

N/A

Notes

This function searches the string for words that can be
translated into numerical values and then returns the
values.

GetVisibility

Input Parameters

N/A

Function Output

A Boolean concerning the console’s visibility.

Functions Referenced

N/A

Notes N/A
SetVisibility

Input Parameters A Boolean.
Function Qutput N/A
Functions Referenced N/A

Notes

Set the console’s visibility.

90 Section 3 - Detailed Design Document

2.3.6. Data Loading

WorldSingleton Class Functions

Instance

Input Parameters

N/A

Function Output

Returns a pointer to the WorldSingleton object if it exists,
otherwise, it creates a WorldSingleton object and returns
its pointer.

Functions Referenced

N/A

Notes

N/A

LoadWIDFile

Input Parameters

A string containing the filename of the .wid file to load.

Function Output

A Boolean value indicating success.

Functions Referenced

LoadEntityData, LoadBitmap, BTS, STB, StringTolnt,
StringToDouble

Notes

Data from the .wid file is loaded into a new LocalEntity
structure to be added to the WorldSingleton.

LoadEntityData

Input Parameters

A pointer to a LocalEntity structure, to be filled.

Function Output

A Boolean value indicating success.

Functions Referenced

LoadMaterialData, BTS, STB, StringTolnt

Notes

Data from the .elb file (including .x meshes) is loaded into
the above LocalEntity structure.

LoadMaterialData

Input Parameters

A pointer to a LocalEntity structure, to be filled.

Function Qutput

A Boolean value indicating success.

Functions Referenced

BTS, STB, StringTolnt, StringToDouble

Notes

Data from the .mlb file is loaded into the above
LocalEntity structure.

LoadBitmap

Input Parameters

A character pointer referencing the filename of the bitmap
to be loaded.

Function Output

A BYTE pointer, referencing the array of BYTE values
culled from the bitmap.

Functions Referenced

N/A

Notes

This function reads the color values of the bitmap into
memory and stores them in a BYTE * structure to be later
stored in the WorldSingleton.

BTS

Input Parameters

A _bstr_t string.

Function Output

A STL string.

Functions Referenced

N/A

Notes

This function performs a conversion between string types.

Section 3 - Detailed Design Document 91

STB

Input Parameters A char * string.
Function Output A BSTR string.
Functions Referenced N/A

Notes

This function performs a conversion between string types.

StringTolnt

Input Parameters

A STL string.

Function Output

An integer.

Functions Referenced

N/A

Notes

This is a simple type conversion function.

IntToString

Input Parameters

A STL string.

Function Output

A double.

Functions Referenced

N/A

Notes

This is a simple type conversion function.

92

2.3.7. User Input

Section 3 - Detailed Design Document

CZenKeyboard Class Functions

Instance

Input Parameters

N/A

Function Output

A pointer to the Singleton CZenKeyboard object.

Functions Referenced

N/A

Notes

Creates a CZenKeyboard object if it hasn’t been created
yet and returns a pointer, otherwise this function just
returns the pointer.

Initialize

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Initialize the keyboard.

IsKeyDown

Input Parameters

An integer representing the key pressed.

Function Qutput

A Boolean value representing whether a key is down.

Functions Referenced

N/A

Notes

N/A

CZenMouse Class Functions

Instance

Input Parameters

N/A

Function Output

A pointer to the Singleton CZenMouse object.

Functions Referenced

N/A

Notes

Creates a CZenMouse object if it hasn’t been created yet
and returns a pointer, otherwise this function just returns
the pointer.

Initialize

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Initialize the mouse object and load an image to represent
the cursor.

Poll

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Attempts to keep the mouse’s focus on the current window
and updated current mouse information for the class.

GetMousePos

Input Parameters

N/A

Function Output

A POINT object representing the current location of the
mouse.

Functions Referenced

N/A

Notes

N/A

Section 3 - Detailed Design Document 93

IsButtonDown

Input Parameters

An integer marking which button is to be tested, where 0 is
the primary button, 1 is the secondary button, and 2 is the
middle button.

Function Output

A Boolean value representing whether the indicated button
is up or down.

Functions Referenced N/A
Notes N/A
HandleSetCursor

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

This function tells Windows not to do anything to the
mouse cursor since the simulation will be taking care of it.

ShowCursor

Input Parameters

A Boolean on whether the cursor is currently visible.

Function Output

N/A

Functions Referenced N/A

Notes N/A

GetCursorPosition

Input Parameters N/A

Function Output Two integers passed by reference return the current cursor

position.
Functions Referenced N/A
Notes N/A

SetCursorPosition

Input Parameters

wo integers representing the cursor ition.
T t ting the cursor’s position

Function Output

N/A

Functions Referenced

N/A

Notes

Moves the cursor to the indicated position.

MoveCursor

Input Parameters

wo integers representing the cursor’s ition.
T t ting the cursor’s position

Function Qutput

N/A

Functions Referenced

N/A

Notes

Moves the cursor from its original position by the
indicated distances.

UpdateCursorPos

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Updates the cursor’s position based on mouse polling data.

94

CZenFont Class Functions

Section 3 - Detailed Design Document

2.3.8. Text Manipulation and Display

Initialize

Input Parameters

An HFONT format object and the color of the font.

Function Qutput

N/A

Functions Referenced

N/A

Notes

A new font is created.

SetColor

Input Parameters A new font color.
Function Output N/A

Functions Referenced N/A

Notes

Sets the text to a new, temporary color.

RestoreColor

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Resets the font to its original color from initialization.

OutputText

Input Parameters

A char* containing the text to be rendered, and the
coordinates it is to be rendered at.

Function Quiput N/A
Functions Referenced N/A
Notes N/A

GetBoundingBox

Input Parameters

A char* containing the text that will be rendered later.

Function Qutput

Two integers passed by reference.

Functions Referenced

N/A

Notes

The integers are filled with the width and height of the font
once it is rendered.

GetPtrToSelf

Input Parameters N/A

Function Output A pointer to the parent CZenFont object.
Functions Referenced N/A

Notes N/A

2.3.9. Screen Management

Fontbank Class Functions

Section 3 - Detailed Design Document 95

Instance

Input Parameters N/A

Function Qutput A pointer to the Singleton Fontbank object.
Functions Referenced N/A

Notes

Creates a Fontbank object if it hasn’t been created yet and
returns a pointer, otherwise this function just returns the
pointer.

AddFont

Input Parameters

An integer ID and a CZenFont object.

Function Output

N/A

Functions Referenced

N/A

Notes

Adds the font to the fontbank under the indicated ID.

GetFont

Input Parameters

An integer ID.

Function Output

A CZenFont pointer to the font with the matching ID.

Functions Referenced

N/A

Notes N/A
Screen Class Functions
Instance
Input Parameters N/A
Function Qutput A pointer to the Singleton Screen object.
Functions Referenced N/A

Notes

Creates a Screen object if it hasn’t been created yet and
returns a pointer, otherwise this function just returns the
pointer.

Clear

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Clears the screen object of all text entries.

SetText

Input Parameters

An integer ID, a CZenFont pointer, a char* containing a
line of text, and two integers for the position the text is to

be displayed at.
Function Output N/A
Functions Referenced N/A

Notes

Adds a Text objects to the screen’s list.

SetFunc

Input Parameters

An integer ID and a void function pointer.

Function Output

N/A

Functions Referenced

N/A

Notes

Associates a void function with the line of text with the
given ID.

96

Section 3 - Detailed Design Document

GetTextList

Input Parameters

N/A

Function Output

A pointer to the list of Text objects to be displayed.

Functions Referenced

N/A

Notes N/A

SetWorldFunc

Input Parameters An integer ID and a function pointer.
Function Output N/A

Functions Referenced N/A

Notes

Associates a function with the line of text with the given
ID.

SetWorldFile

Input Parameters

An integer ID and a string of text.

Function Output

N/A

Functions Referenced

N/A

Notes

Associates a filename with the line of text with the given
ID. This is used to associate filenames with their names
rendered to the display.

Text Class Functions

SetAttribute

Input Parameters

An integer ID, a CZenFont pointer, a char* containing a
line of text, and two integers for the position the text is to
be displayed at.

Function Output

N/A

Functions Referenced

N/A

Notes

Initializes all of the object’s properties.

GetlD

Input Parameters N/A

Function Output An integer ID of the object.
Functions Referenced N/A

Notes N/A

SetFuncPtr

Input Parameters

A void function pointer.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Associates a pointer with the Text object.

GetFuncPtr

Input Parameters N/A

Function Output A void function pointer.
Functions Referenced N/A

Notes N/A

Section 3 - Detailed Design Document

97

SetWorldFuncPtr

Input Parameters A function pointer.
Function Output N/A

Functions Referenced N/A

Notes

Associates a function with the Text object for use in
associating a filename with its name rendered to the
display.

GetWorldFuncPtr

Input Parameters

N/A

Function Output

A function pointer to the filename world function.

Functions Referenced

N/A

Notes N/A
SetWorldFile

Input Parameters A string object.
Function Output N/A

Functions Referenced N/A

Notes

Sets the filename to the value of the string object.

GetWorldFile

Input Parameters

N/A

Function Output

A string object containing the filename value.

Functions Referenced

N/A

Notes N/A
GetFontPtr

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A
Notes N/A
GetTextPtr

Input Parameters N/A

Function Output

A pointer to the Text object’s font object.

Functions Referenced

N/A

Notes N/A
GetX
Input Parameters N/A

Function Output

An integer of the Text object’s future X position.

Functions Referenced

N/A

Notes N/A
GetY
Input Paramelers N/A

Function Output

An integer of the Text object’s future Y position.

Functions Referenced

N/A

Notes

N/A

98 Section 3 - Detailed Design Document

Render
Input Parameters N/A
Function Output N/A

Functions Referenced

CZenFont: OutputText

Notes

Renders the Text object to the display.

Section 3 - Detailed Design Document 99

2.3.10.Camera

CZenCamera Class Functions

Instance

Input Parameters

N/A

Function Output

A pointer to the Singleton CZenCamera object.

Functions Referenced

N/A

Notes

Creates a CZenCamera object if it hasn’t been created yet
and returns a pointer, otherwise this function just returns
the pointer.

Update

Input Parameters N/A
Function Qutput N/A
Functions Referenced N/A

Notes

Sets Direct3D’s transformation matrix based on all of the
values currently in the camera.

Move

Input Parameters

Three floating point numbers.

Function Output

N/A

Functions Referenced

N/A

Notes

The camera’s position is adjusted by the three coordinated
passed to it as floating point numbers. This function
prevents the camera from leaving its appropriate zone in
the coordinate space.

Render

Input Parameters

N/A

Function Output

An HRESULT value, indicating whether the rendering was
successful or not.

Functions Referenced

N/A

Notes

This function does nothing right now, but if there was a
model to be rendered where the camera exists (a model of
the user’s character, for example) then that code would go
in this function.

Reset

Input Paramelters N/A
Function Output N/A
Functions Referenced N/A

Notes

Clears and resets all vectors and values in the object.

GetSize

Input Paramelters N/A

Function Output An integer representing the size of the camera object in
memory.

Functions Referenced N/A

Notes N/A

100 Section 3 - Detailed Design Document

GetUp

Input Parameters

Three floating point numbers, passed by reference.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Returns the values of the ‘up vector’ through the input
parameters. This is one of three vectors that orient the
camera in the 3D coordinate space.

SetUp

Input Parameters

Three floating point numbers.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the values of the ‘up vector’ to the values of the input
parameters.

GetRight

Input Parameters

Three floating point numbers, passed by reference.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Returns the values of the ‘right vector’ through the input
parameters. This is one of three vectors that orient the
camera in the 3D coordinate space.

SetRight

Input Parameters

Three floating point numbers.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the values of the ‘right vector’ to the values of the
input parameters.

GetLookPoint

Input Parameters

Three floating point numbers, passed by reference.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Returns the values of the ‘look vector’ through the input
parameters. This is one of three vectors that orient the
camera in the 3D coordinate space.

SetLookPoint

Input Parameters

Three floating point numbers.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the values of the ‘look vector’ to the values of the
input parameters.

GetPosition

Input Parameters

Three floating point numbers, passed by reference.

Function Output

N/A

Functions Referenced

N/A

Notes

Returns the camera’s position through the input
parameters.

Section 3 - Detailed Design Document

101

SetPosition

Input Parameters

Three floating point numbers.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the camera’s position to the values of the input
parameters.

GetVelocity

Input Parameters

Three floating point numbers, passed by reference.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Returns the camera’s velocity through the input
parameters.

SetVelocity

Input Parameters

Three floating point numbers.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the camera’s velocity to the values of the input
parameters.

GetRoll

Input Parameters

A floating point number, passed by reference.

Function Output

N/A

Functions Referenced

N/A

Notes

Returns the camera’s Roll value.

SetRoll

Input Parameters A floating point number.
Function Qutput N/A

Functions Referenced N/A

Notes

Sets the camera’s Roll value.

GetYaw

Input Parameters

A floating point number, passed by reference.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Returns the camera’s Yaw value.

SetYaw

Input Parameters

A floating point number.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the camera’s Yaw value.

GetPitch

Input Parameters

A floating point number, passed by reference.

Function Output

N/A

Functions Referenced

N/A

Notes

Returns the camera’s Pitch value.

102 Section 3 - Detailed Design Document

SetPitch

Input Parameters A floating point number.
Function Output N/A

Functions Referenced N/A

Notes Sets the camera’s Pitch value.

2.3.11. Terrain Rendering

Section 3 - Detailed Design Document 103

TerrainSingleton Class Functions

Instance

Input Parameters N/A

Function Qutput A pointer to the TerrainSingleton object.
Functions Referenced N/A

Notes

Creates a TerrainSingleton object if it hasn’t been created
yet and returns a pointer, otherwise this function just
returns the pointer.

CreateVertexBuffer

Input Parameters N/A

Function Output A Boolean value indicating success.
Functions Referenced N/A

Notes

Fills the TerrainSingleton’s list of vertices with
information from the WorldSingleton (heights) along with
additional information specified here (x,z position, normal
vectors, colors). This function then takes the above
vertices and stores them in the appropriate vertex buffers,
ending up with 499 horizontal triangle strips of vertices.

Render

Input Parameters N/A

Function Output A Boolean value indicating success.
Functions Referenced N/A

Notes

The 499 vertex buffers containing horizontal triangle strips
are rendered to the screen.

GetHeight

Input Parameters

A pair of floating point numbers representing a location on
the 2D terrain field.

Function Output

A floating point number containing the terrain height at the
location specified in the input parameters.

Functions Referenced

N/A

Notes

The height of the terrain at a specific point is returned.
There are 30 cases that must be considered, since each
terrain cell (area between four vertices) is composed of
two triangles. These thirty cases are: on a vertex, on a
horizontal line between vertices, on a vertical line between
vertices, on a diagonal line between vertices (between the
two triangles in a cell), and 13 separate tilts for each of the
two triangles in the cell. These 13 tilts for the three
vertices are: one possibility where all three vertices are
equal, three possibilities where two vertices are equal and
the third is smaller, three possibilities where two vertices
are equal and the third is larger, and six possibilities where
all three vertices are of different sizes.

Global Module Functions

104 Section 3 - Detailed Design Document

2.3.12. Graphics / Rendering Pipeline

LoadBitmapToSurface

Input Parameters

A character string containing the filepath of the bitmap to
be loaded, a pointer to a LPDIRECT3DSURFACES9, and a
pointer to the LPDIRECT3DDEVICE9.

Function Qutput

An integer indicating success.

Functions Referenced

N/A

Notes

Load a bitmap from file to a 2D drawing surface.

InitTiming

Input Parameters N/A

Function Output A HRESULT indicating success.
Functions Referenced N/A

Notes

Initializes a global timing mechanism, storing the number
of ticks per minute.

Pause

Input Parameters

An integer whose value is the number of milliseconds that
the system should pause for.

Function Output

N/A

Functions Referenced

N/A

Notes

Initializes a global timing mechanism.

GetNumTicksPerMs

Input Parameters

N/A

Function Qutput

A float, containing the number of ticks per millisecond.

Functions Referenced

N/A

Notes N/A
FrameCount

Input Parameters N/A
Function OQutput N/A
Functions Referenced N/A

Notes

Stores the number of frames per second in a global value.

SetAmbientLight

Input Parameters

A D3DCOLOR object.

Function Output

N/A

Functions Referenced

N/A

Notes

This sets the ambient light color for the Direct3D Device.

CZenVertex Class Functions

Set

Input Parameters

Six floats for 3D coordinates and a normal vector, two
D3DCOLOR objects containing diffuse and specular
colors, and two more floats containing texture coordinates.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets the values of the CZenVertex object.

CZenObject Class Functions

Section 3 - Detailed Design Document 105

Render

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Does nothing, as this is a base class for other classes.

GetNext

Input Parameters

N/A

Function Output

Returns a pointer to the next object. CZenObjects and its
derivative classes contain pointer in order to create one-
way linked lists of objects.

Functions Referenced N/A
Notes N/A
SetNext

Input Parameters N/A
Function OQutput N/A
Functions Referenced N/A

Notes

Sets a pointer to the next object. CZenObjects and its
derivative classes contain pointer in order to create one-
way linked lists of objects.

GetParentFrame

Input Parameters N/A

Function Output Returns a pointer to a CZenFrame object.
Functions Referenced N/A

Notes N/A

SetParentFrame

Input Parameters N/A

Function Output N/A

Functions Referenced N/A

Notes

Sets a pointer to a CZenFrame object.

GetSize

Input Parameters

N/A

Function Output

An integer containing the size of the data structure.

Functions Referenced

N/A

Notes

This function is a virtual function.

CZenFace Class Functions

SetProps

Input Parameters

An integer to specify which vertex is being set (0-2), six
floats for 3D coordinates and a normal vector, two
D3DCOLOR objects containing diffuse and specular
colors, and two more floats containing texture coordinates.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Sets the properties of the CZenFace object.

106 Section 3 - Detailed Design Document

SetTexture

Input Parameters

A LPDIRECT3DTEXTURES object.

Function Output

An HRESULT value indicating success.

Functions Referenced

N/A

Notes

Sets a texture to be loaded to the CZenFace object.

Render

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Renders the CZenFace object to the environment.

GetSize

Input Parameters

N/A

Function Output

An integer containing the size of the data structure.

Functions Referenced

N/A

Notes

N/A

CZenMaterial Class Functions

SetDiffuse

Input Parameters

Three floats representing the color of the light.

Function Output

N/A

Functions Referenced

N/A

Notes

N/A

SetSpecular

Input Parameters

Three floats representing the color of the light and a fourth
float containing the power of the specular light.

Function Qutput

N/A

Functions Referenced

N/A

Notes

N/A

SetAmbient

Input Parameters

Three floats representing the color of the light.

Function Qutput

N/A

Functions Referenced

N/A

Notes

N/A

SetEmissive

Input Parameters

Three floats representing the color of the light.

Function Output

N/A

Functions Referenced N/A

Notes N/A

Update

Input Parameters N/A

Function Output An HRESULT object indicating success.
Functions Referenced N/A

Notes

Resends the object’s material to the Direct3D Device.

|

CZenMesh Class Functions

Section 3 - Detailed Design Document 107

LoadXFile

Input Parameters

A character pointer to the filepath of the xfile to be loaded.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Loads a .x file into the CZenMesh object.

Render

Input Parameters N/A

Function Qutput An HRESULT object indicating success.
Functions Referenced N/A

Notes

Renders the 3D mesh to the environment.

SetMaterial

Input Parameters A pointer to a CZenMaterial object.
Function Output N/A

Functions Referenced N/A

Notes

Sets the mesh’s masterials to the input material.

GetSize

Input Parameters

N/A

Function Output

An integer representing the size of the CZenMesh
structure.

Functions Referenced N/A

Notes N/A

GetMesh

Input Parameters N/A

Function Output Returns a pointer to the CZenMesh’s LPD3DXMESH

object
Functions Referenced N/A
Notes N/A

CZenFrame Class Functions

SetCallback

Input Parameters

A pointer to a function.

Function Output

A HRESULT object indicating success.

Functions Referenced

N/A

Notes

Sets the pointer to a function that deals with frame
movement.

GetVelocity

Input Parameters

Three floats representing a velocity vector, passed by
reference.

Function Output

N/A

Functions Referenced

N/A

Notes

Returns the frame’s current velocity by reference.

108 Section 3 - Detailed Design Document

SetVelocity

Input Parameters

Three floats representing a velocity vector.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Sets the frame’s velocity to the new values specified.

GetPosition

Input Parameters

Three floats representing a position, passed by reference.

Function Output

N/A

Functions Referenced

N/A

Notes

Return’s the frame’s position by reference.

SetPosition

Input Parameters

Three floats representing a position.

Function Qutput

N/A

Functions Referenced

N/A

Notes

Updates the frames current position to the new values
specified.

GetLocal

Input Parameters

A D3DXMATRIX passed by reference.

Function Output

N/A

Functions Referenced

Update

Notes

Returns the frame’s transformation matrix by reference.

GetYaw

Input Parameters

A float passed by reference.

Function Output

N/A

Functions Referenced

N/A

Notes

Returns the frame’s Yaw by reference.

SetYaw

Input Parameters

A single float value.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets a new Yaw value.

GetRoll

Input Parameters A float passed by reference.
Function Qutput N/A

Functions Referenced N/A

Notes

Returns the frame’s Roll by reference.

SetRoll

Input Parameters

A single float value.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets a new Roll value.

GetPitch

Input Parameters A float passed by reference.
Function Output N/A

Functions Referenced N/A

Notes

Returns the frame’s Pitch by reference.

Section 3 - Detailed Design Document 109

SetPitch

Input Parameters

A single float value.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets a new Pitch value.

Update

Input Parameters N/A
Function Output N/A
Functions Referenced N/A

Notes

Updates the frame’s transformation matrix based on all of
the current position and movement values.

AddObject

Input Parameters

A pointer to a CZenObject object.

Function Qutput

A HRESULT object indicating success.

Functions Referenced

N/A

Notes

Adds a child object to the current frame

Render

Input Parameters N/A

Function OQutput A HRESULT object indicating success.
Functions Referenced Update

Notes

Renders all of the child objects of the frame to the
environment.

SetNext

Input Parameters

A pointer to a CZenFrame object.

Function Output

N/A

Functions Referenced

N/A

Notes

Sets a pointer to another frame, allowing frames to form a
one-way linked list.

GetNext

Input Parameters N/A

Function Output A pointer to a CZenFrame object.
Functions Referenced N/A

Notes

Gets a pointer to another frame, allowing frames to form a
one-way linked list.

AddFrame

Input Parameters

A pointer to a CZenFrame object.

Function Output

A HRESULT object indicating success.

Functions Referenced

N/A

Notes

Adds a child frame to the current frame.

GetParent

Input Parameters N/A

Function Qutput A pointer to a CZenFrame object.
Functions Referenced N/A

Notes

Returns a pointer to a frame’s parent frame.

110 Section 3 - Detailed Design Document

SetParent

Input Parameters A pointer to a CZenFrame object.
Function Output N/A

Functions Referenced N/A

Notes

Sets a parent frame for the current frame.

CZenLight Class Functions

SetDiffuse

Input Parameters

Three float values representing the color of the light.

Function Output

N/A

Functions Referenced N/A
Notes N/A
SetSpecular

Input Parameters

Three float values representing the color of the light.

Function Output

N/A

Functions Referenced N/A
Notes N/A
SetAmbient

Input Parameters

Three float values representing the color of the light.

Function Output

N/A

Functions Referenced N/A
Notes N/A
Enable

Input Parameters

A Boolean value for whether the light should be on or off.

Function Output

N/A

Functions Referenced

N/A

Notes

Turns the light on or off.

IsOn

Input Parameters

N/A

Function Output

A Boolean value indicating whether the light is turned on
or off.

Functions Referenced N/A

Notes N/A

Render

Input Parameters N/A

Function Output A HRESULT object indicating success.
Functions Referenced N/A

Notes Renders the light to the environment through the Direct3D
Device.

GetSize

Input Parameters N/A

Function Output

An integer representing the size of the CZenLight
structure.

Functions Referenced

N/A

Notes

N/A

Section 3 - Detailed Design Document 111

2.3.13. Collision Detection

Physics Module Functions

CameraJump

Input Parameters N/A

Function Qutput N/A

Functions Referenced Module #10: SetVelocity

Notes Sets the camera’s velocity, as if the camera were a person
who just applied a force to initialize a jump.

CameraGravity

Input Parameters A boolean that tells the function whether the camera is on
the ground or not.

Function Output N/A

Functions Referenced Module #10: GetVelocity, SetVelocity, GetPosition,
SetPosition

Notes Adjusts the camera’s velocity and position accordingly.

FindHighestTerrainVertex

Input Parameters Four floats, representing the center x,z coordinate for the
object to be tested, as well we the width and depth of the
object.

Function Quiput A float representing the tallest vertex below the object.

Functions Referenced Module #11: GetHeight

Notes The height of the tallest vertex beneath an object is
returned to prevent an object from falling through the
terrain.

EntityGravity

Input Parameters A pointer to a LocalEntity

Function Quiput N/A

Functions Referenced FindHighestTerrainVertex, Module #11: GetHeight

Notes Adjusts an entity’s velocity and position accordingly.

http:No~.i.ce

http:functi..ms

http:depth="252.00
http:width="252.QO
http:depth="330.00
http:width="330.00
http:height="330.00
http:depth="384.00
http:width="384.00
http:height="256.00

http:friction=12.75
http:mass="4.36

http:System.IO
http:donblas.org

http:DialogResult.OK

http:matet�1.al
http:subrout1.ne

http:xNode.attributes.ge

http:xComNode.at

http:MsgBoxResult.No

http:btnDeleteMat.Cl

http:System.IO
http:Set.Materl.al
http:Materl.al
http:aonblas.org
http:frmMa1o.vh

http:DialogResult.OK
http:DialogResult.OK

http:MsgBoxResult.OK

http:DialogResult.OK

http:MaterJ.al

http:DialogResult.OK

http:updatl.ng
http:occurl.ng

http:btnLoadWorld.Cl
http:System.IO
http:Copyrl.gh
http:frmMain.vb

http:StatusBarl.Te

http:MsgBoxResult.OK

http:DialogResult.OK

http:locatJ.on

http:intormatl.on

http:donblas.org
http:filename.vb

http:hovel�l.ng
http:generatl.on
http:bitmap.vb

202 Section 6 - W.I.M. Tool

lblSens.Text = "Sensitivity: " + (tbSensitivity.vValue * 2).ToString()
End Sub

private Sub PerlinNoise(ByVal sender As System.Object, ByVal e As System.EventArgs)
. btnPerlin.Click
Dim dTemp As Double

Dim bms As New BitmapManipStruct (frmMain.objBitmap)
bwus . Lock ()

For Y = 1 Te 10
For X =1 To 10
dTemp = PerlinNoise2D(CDbl (X), Dbl (Y))

15 allow ~dle our resu to

While (System.Math.Abs(dTemp) > 1.0 Cr Not (System.Math.Abs(dTemp) <> 0))
dTemp = PerlinNoise2D (CDbL (X), CDbl(Y))

End While

' Write noise 1 sl file

TFWriteNoisePixel (bms, X, Y, dTemp)

bms . Unlock ()
boxTerrain.Image = frmMain.objBitmap
End Sub

brivate Sub SubdivideDisplace (BEyVal sender As System.Object, EyVal e A=
System.EventArgs) Handles btnSubDis.Click

kspace will be 512 x 512 and we'll just

Dim nSize

Dim nStartElevation As

Dim bmg As New BitmapManipStruct (frmMain.objBitmap)
bms.Lock ()

' Begin the Subdivide and Displace algorithm

SDHelper (nSize, nStartElevation, nStartElevation, nStartElevation, _
nStartElevation, nStartElevation, nStartElevation, nStartElevation,
nStartElevation, bms, 1, 512, 1, 512)

bms .Unlock ()
boxTerrain.Image = frmMain.objBitmap

End Sub

Function SDHelper (ByVal nSize As Short, nLeft As Short, ByVal nRight As
nTop As Short, ByVal nBottom As Short, al nTL As Short, ByVal nTR As
1

nBL As Short, B

1 nBR As Short, ByVal bms As BitmapManipStruct, ByvVal xMin
ByVal xMax As

/Val yMin As Short, ByVal yMax As Short)

= otn o

Dim RNG &As New Random

| = 1milate rtha ~ranrar

Dim nCenter As = (nLeft + nTop + nRight + nBottom) / 4

2)

Tf (xMin <= 500 And yMin <= 500) Then ' This line igno

If Wot (RNG.Next (0, 9)) Tt
Tf (RNG.Next (0, 1)) Then
TFWritePixel (bms, xMin, yMin, nCenter + 1)

o

se
TFWritePixel (bms, xMin, yMin, nCenter - 1)
End If
Else ' Write 'cente: height)L ©the
TFWritePixel (bms, xMin, yMin, nCenter)
End If
End If

http:donblas'donblas.org
http:bitmap~ma~p.vb

http:Debuggl.ng
http:posl.tl.on
http:workl.ng
http:donblas.org

http:sendl.ng

http:lnlt~al12at1.0n
http:ositl.on
http:captl.on

http:Hanl.o.le

http:g_Camera->SetYaw(O.Of

http:renderl.ng
http:cont.nu.ng

http:rotatl.vn
http:entitl.es
http:locatl.on

http:renderl.ng
http:renderl.no

http:0.01-0.50

http:noslc.on

http:load1.ng
http:detinLtl.on
http:re�.!'isl.on
http:nblas.org

http:functl.on
http:unctl.on

http:donblas.org

http:lnfonnacl.on

http:maten.al

http:orl.entatl.OO
http:Re_uJ.TI

http:rotatJ.on

http:pos_t.on

http:cient:l.ty

http:olumn.1.11

http:positl.on
http:Sectl.on

http:eOl:r.l.es

http:m_MouseData.IY
http:m_MouseData.IX
http:P09l.tl.On
http:postl.on
http:l.Qsl.de

http:m_MouseData.lY
http:m_MouseData.lX

http:donblas.org

http://www

http:functl.on
http:donblas.org

http:vertir.es

http:Lookl.ng
http:Lookl.ng

	Black_black
	Black_grey
	Black_color1
	edge

