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Abstract:

This honors project compares the properties of
several alternative types of convergence, namely
Uniform Convergence, Hausdorff Distance, and Inner

and Outer Limits, and their application to fractals.
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1 Fractals

A person sits on the couch watching television. On the television screen appears
the same person sitting on a couch watching television. This spiral of images continues
on and demonstrates the basic idea of self-similarity, which is a central property of a
fractal [Mandelbrot]. A fractal is a fragmented geometric shape that can be divided into

parts, each of which is a smaller replica of the whole.

1.1 Iterated Function Systems

Iterated Function Systems (IFS) are a way of constructing fractals. This is easy to
illustrate with the following example. Consider a triangle as our first set. We can apply a
process of reducing the sides of the triangle to half size and make three copies which we
connect to form another triangle whose corners are at the midpoints of the sides of the
original triangle. This triangle becomes the second in the sequence of sets. We can apply
this process repeatedly to create a sequence of sets, which approaches Sierpinski’s

Triangle as seen in the figure 1.1 below.

Figure 1.1: The fifth
iteration in Sierpinski's
Triangle
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In general, we start with an arbitrary set and a collection of functions, each of
which is a combination of reflection, translation, rotation, and/or dilation. Combining
this collection of functions into a single compound function, F, we apply F to the original
set to generate a new set. Such a compound function, £ is known as an Iterated Function

Systems when applied to sets in order to generate fractals [Schienerman].
1.2 An Example of an IFs: Heighway’s Dragon

An interesting example of Iterated Function Systems is that of Heighway’s
Dragon. Initially, we start with two congruent line segments forming a right angle as
shown in Figure 1.2 below. Let’s call the lefimost point of the initial figure, the tail, the
lowest point, the foot, and the rightmost point, the head. To this set we apply two

functions, F| and F,, which comprise the Iterated Function System.

LS nes”

‘ Figure 1.2: Sequence of sets that approaches Heighway's Dragon ‘

Fi consists of a 45° rotation clockwise and dilation by a factor of V% in such a
way that the tail of the modified figure is placed where the tail of the original was, and

the head of the reduced figure is placed where the foot of the original used to be.

F consists of a 135° rotation clockwise and dilation by the same factor of V' in
such a way that the head of the new modified piece is touching the head of the piece
created by F, which now forms the foot of the new dragon. The tail of the piece created

by F> forms the head of the next in the sequence.
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Taking the union of £, and F, forms F. More specifically, the result of F applied
to the set S'is F(S) = F(S) W Fx(S).

This sequence of figures above (Figure 1.2) shows the initial set and the results of
four applications of the Iterated Function System F. Heighway’s Dragon is what is

obtained when this process is continued indefinitely [Edgar].

The fractals that we have been discussing are called deterministic fractals.
Deterministic fractals are those that are generated according to some specific rule, such as
an Iterated Function Systems. Fractals that are randomly generated are refered to as

nondeterministic fractals.

Figure 1.3 shows a rather elaborate depiction of the tenth set in the sequence for

Heighway’s Dragon with sets one to nine shown behind it.
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2 Fractals as Limits of Sequences of Sets,

Convergence

As with Sierpinski’s Triangle, Heighway’s Dragon is the limit of a certain

sequence of sets. This project focuses on the phenomenon of convergence of sets.

In many examples of fractals obtained as limits of sequences, the existence of a
limit is obvious. For example, the so-called Koch snowflake (shown in Figure 2.1) is

simply defined by taking the union of the sequence that is used to define it.

Figure 2.1: Koch Snowflake
--generated using Geometer's
Sketchpad.

Also, Sierpinski’s Triangle is made up of the intersection of the sequence that
defines it. However, in the case of Heighway’s Dragon, we modify each set in the
sequence to find its successor, and the two sets have very few points in common.
Therefore, the idea of convergence of sets is an important one to study in order to
understand the definition of a fractal as defined by an Iterated Function System from a

technical point of view.

FRACTALS AND CONVERGENCE OF SEQUENCES OF SETS LYCOMING COLLEGE
LINDSEY M. CARR - HONORS PROJECT PAGE 9 SUMMER 2003



Before examining the convergence of sets, we will begin with an overview of

convergence of sequences of simpler objects such as sequences of points and functions.
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3  Metric Topology of Sets

The natural setting to describe the convergence of a sequence of points is in a
metric space. We will describe below the essential features of a metric space, which is
effectively just a distance function. Using this distance function, we define the
convergence of a sequence of points. It is then possible to define a useful kind of
convergence of functions, namely uniform convergence. Finally, we look at two

alternative methods for analyzing the convergence of a sequence of sets of points.

Various kinds of convergence have different applications. The type of
convergence used reveals something of the properties of the limit and their relationship to
the properties of the sets of the sequence, for instance whether the limit is closed or

bounded.
3.1 Metric spaces

Suppose we have a set X, and a function d : XxX — It that satisfies the following

properties:

1. d(x,y) >0, for every x and y in X, and d(x,y)=0 if and only if x=y [positivity],
2. d(x,y)=d(yx), for every x and y in X [symmetry], and finally,

3. d(x,z) <d(x,y)+ d(y,z) [Triangle inequality].

Such a function d is called a metric for X, and the system (X, d) is called a metric

space.
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‘3.2 Balls and Boundedness

Balls are objects in metric spaces. Let (X,d) be a metric space. Let p be a point in
X, and let » be any positive number. Then we define the ball of radius r around point p to

be the set consisting of all points in X whose distance from p is less than 7.
Some important concepts that we can define immediately are:

Bounded Sets: A set S is said to be bounded if and only if it is a subset of some open
ball.

Open Sets: A set S is said to be open if and only if it is a union of open balls.

Closed Sets: A set S is said to be closed if and only if its complement is an open set.
Compact Sets: For the purposes of this paper, in which the setting is 2", there is a
simple definition of compactness: A set is compact if and only if it is closed and

bounded.

The following properties of these kinds of sets follow immediately from their

definitions.

1.  Any union of open sets is also open. A finite intersection of open sets is
open. Any intersection of closed sets is closed, and finite unions of
closed sets are closed.

2.  Finite sets are bounded and closed, and therefore compact.

3.  Finite unions of compact sets are also compact. A closed subset of a

compact set is compact [de Silva].

The question then follows: are all fractals compact? The answer is no because not
all fractals are closed. Although we can see that Sierpinski's Triangle is closed, others are

not. For example, we can define a fractal on the real line from zero to one consisting of
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the points {0, 1, 1/2, 1/4,3/4, 1/8, 3/8, 5/8, 7/8, 1/16 ... }. This fractal is clearly not

closed.
3.3 Convergence (of points): Definitions and properties

Suppose [u,] is a sequence in some metric space X, and suppose L is a point in X.
We say that L is the limit of the sequence [u,] if and only if every open ball B around L

contains all the points of [u,] except a finite number.

The limit of a bounded sequence lies within the same bounds as the sequence
itself. Furthermore, if the points of a sequence lie in a closed set F, the limit also lies in
F.

3.4 Cauchy Sequence and completeness

Suppose [u,] is a sequence which has no obvious limit. In this case, we cannot
apply the definition of convergence, and a different approach must be taken. The Cauchy
Criterion is used in such cases. The Cauchy Criterion examines whether a sequence has
the potential to have a limit. For every metric space, if a sequence is not Cauchy it will

definitely not converge. In a few special spaces, we can infer more.

A sequence [u,] is said to satisfy the Cauchy Criterion if for every positive €,
there exists an integer N such that for every pair of integers p and g greater than N, we

have d(up, u,) <. [Such a sequence is said to be a Cauchy sequence, or simply Cauchy.]
" Theorem 1: If a sequence is convergent, then it is Cauchy.

The converse is not always true. A metric space in which every Cauchy sequence
is also convergent is said to be a complete metric space. A few well-known complete

metric spaces include the real numbers with the distance function d(x, y) = |y - x| given by
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the absolute value, and more generally Euclidean n-space with the Euclidean distance. It

is also interesting that K(S) defined below is complete.
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4 The Hausdorff Distance

Hausdorff Distance is a way to describe convergence of sets. The Hausdorff

Distance is the distance between two compact sets.
4.1 Definitions and lllustrations

Suppose (S, d) is a metric space. Let K(S) denote the collection of all compact
subsets of S. For any J in K(S), define Ng(J) = \J{Br(p) | p € J}, using the metric in S.

We call this set the R-expansion of J.

Next we define the distance-function D as follows for any pair of sets U, V

[Edgar]:
DU,V)y=1nf {R>0 | V < Ng(U), and U < Ng(V)}.

It is important to remember that we are dealing with two metric spaces. The first

is the metric space (S, d). The second is (K(S), D).

In Figure 4.1, an elephant and a giraffe demonstrate the basic concept of the
Hausdorff Distance. Each represent compact sets. For the sake of illustration, we have
placed an R-expansion of a certain radius around the giraffe, depicted in yellow.
Similarly, we placed an R-expansion of a certain radius around the elephant, shown in

blue.
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[K(S) 1s the set of all compact subsets of S and is associated

with the Hausdorff Distance. ]

Proof [following Edgar]: Suppose [4,] is a Cauchy sequence in
K(S). We must show that [4,] converges. Let
A = {x | there is a sequence [x;] with x; € A and xx — x}.
A consists of the limits of [x;]. Now, we must show that 4,

converges to 4.

Let € > 0 be given. Then, there exists a natural number N
such that p, ¢ > N implies D(A4p,, A;) < €/2. This is the
Cauchy Criterion applied to [4,] in the hypothesis.

Let p 2N. We must show that D(4,, 4) <e.

If x € A, then we know that there is a sequence [x;] with

xx € Ar and x; — x. Thus, for large enough g, we have
(x4, x) <eg/2. This is from the definition of convergence.
Also, if ¢ 2 N, then (since D(4,, Ap) <€/2) thereisay € 4,
with p(x,, y) <¢&/2, thus

P, x) < py, xg) + plxg, x) <e/2+¢e/2=¢. This says that
there exists some y in 4, within € distance of x. Therefore,
A < Ne(4,). [Ne(4p) denotes the union of all e-balls around
points of 4,.] We have shown that g-balls around points in

Ap cover A.
Now suppose y € 4,. Choose integers k; < k; < ... such that

9
ki =p and D(Akj,Am) < ?, for all m >k; because [44]

is Cauchy. For example, choose k; such that k; = p and
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D(A,el A) <% for all m > k. Next, choose k; such that

D(4,,4,) <% for all m > k. In general, choose £; such
£
that D(Akj,Am) < YR for all m > k;.

Then define a sequence [yx] with y; € 4, as follows: define

V1... Yp-1 arbitrarily in 4;... A,y , and define y, = y.
£
For k; < k < kj+1, choose y; € Ay such that p(yk/ Y < 57

Then yy is a Cauchy sequence, so it converges. Let x be its
limit. Thus, x € 4. We have p(y, x) = lim p(y, yx) <e.
Thus y € Ng(4). This shows that 4,  N(4).

So we have D(4, 4,) < ¢, Therefore [4,] converges to 4.

It remains to show that 4 is in fact compact. We omit the
proof of this fact. The proof is to be found in Measure,

Topology, and Fractal Geometry by Edgar. .
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5 Convergence from the point of view

of Fractals

The type of convergence that may be applied to fractals depends on the type of
fractal. For example, if we look at a fractal such as Sierpinski's Triangle, we are looking
at a sequence of sets, and therefore are forced to use Hausdorff Distance, or Inner and
Outer Limits, which will be described below. In the case of a fractal that is defined using
a sequence of curves we can also use the approach of uniform convergence. Below we

examine these types of convergence.

5.1 Convergence of Functions

There are two concepts of convergence of functions, namely pointwise
convergence and uniform convergence. Because pointwise convergence of a sequence of
functions does not tell us anything about the properties of the limit-function, we focus on

uniform convergence.

Definition: Uniform Convergence

Consider a set S in a metric space X, and a metric space Y with metric d. Suppose
we have a sequence [f,] of functions from Sinto Y, i.e, f,:S— Y. Let g be another
function from Sinto Y, i.e, g:S— Y. We say that [f,] approaches g uniformly on the
set S if and only if for every & >0, there exists a positive integer N such that for every
k>N, and for every x in the set S, d(g(x), fi(x)) < &. An important theorem associated

with uniform convergence is [Edgar]:
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Theorem 4: Let [f,] be a uniformly Cauchy sequence f,: S—Y, relative to the
metric space (Y,d). Then [f,] is convergent provided (¥,d) is complete.

Figure 5.1: Demonstrates uniform convergence

Visually speaking, if we place a tube of arbitrary radius € around the graph of the
limit-function g, it must be the case that the tube contains the graphs of all but a finite
number of the functions f, [see above]. Figure 5.2 is an example that displays pointwise
convergence without uniform convergence. The limit function is the x-axis between -1
and 1, as well as the two points (1, 1) and (-1, -1). Clearly, this is not a continuous

function although each function in the sequence is.

Figure 5.2: Demonstrates
non-uniform convergence,
more specifically pointwise
convergence

Theorem 5: If the functions f, are all continuous on S, then

their uniform limit g will also be continuous on S.
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5.2 Uniform Convergence of Heighway's Dragon

We examine Heighway's Dragon as a sequence of functions rather than a
sequence of curves. Let us call this sequence Heighway's Sequence. Each dragon in the
sequence can be written using parametric equations. For example, the first curve pictured

in Figure 5.3 is:

1
Figure 5.3: First set in the -1, 0<¢< 5
sequence of Heighway's x(H)=t, y(t)=
Dragon i1 l<t<1

The others follow in the same manner.

In order to prove Heighway's Sequence is uniformly convergent, we need to show
it is uniformly Cauchy. Following the definition for uniform convergence, we must show
that for every € > 0, there is a positive integer /V such that for every n, m > N, and for

every tinthe set 0 <¢ <1, d(F,(¢), F(f)) <e.

n+2 ?

1 .
Next we show that d(F,(¢), F.+1(t)) < ——, from which we can show the
2
inequality in the previous paragraph.
When we defined Heighway's Dragon, we said that both functions in its
associated Tterated Function System contained a dilation of V%4. This means that if

looking at the n™ set in the sequence, the length of each line segment would be % In
2
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the same manner, the length of the n+1 set would be Thus, finding the distance

n+l °

between the n and the n+1 set would be the altitude, or

nt2 *

Figure 5.4:
A typical

segment of ) \
Dragons n

and n+1.

Assume m > n. Then, by applying the triangle inequality,
A(Fu(t), Fu(t)) < d(Fu(t), Frii(2)) + d(Fu(t), Fusa() + ... + d(Fni(2), Fu(t)). Substituting,
1

1 1
\/5714—2 + \/En+3 ot \/Emﬂ ’

we see it equals which can be shown, using geometric series,

to be less than
V2

From these facts, we can proceed with the proof to show that Heighway's

. . . 2
Sequence is uniformly Cauchy. Let € >0 be given. Let N be chosen such that — <.
2

2 2

<
\/Emax{n,m} \/EN

Then, for every m, n > N, max{d(F.(t), F.(t)) |0 <t <1} < <e.

Therefore, Heighway's Sequence is uniformly Cauchy.

, Note that Theorem 4 suggests since % is complete, if a sequence of functions is
uniformly Cauchy, it is uniformly convergent. Therefore, the limit function is

continuous.
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Thus, Heighway's Sequence is uniformly convergent, and therefore Heighway's

Dragon exists.
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6 Convergence of Sets

With deterministic fractals, applying the processes described above depends on
the existence of a limit of a sequence of sets, or curves. There are several methods of
defining such limits. However, studying a sequence of sets using a particular limit-

definition does not guarantee that the limit exists.

One of the most useful methods of defining limits of sets uses the setting of a

metric space, and the so-called Hausdorff metric defined previously.
6.1 Hausdorff Distance-review

Recall that the Hausdorff distance only applies to compact sets. Suppose U, V are
both compact. Then D(U, V) = the smallest radius r such that U is a subset of the

r-expansion of ¥ and vice-versa.

To apply this metric to the problem of convergence of sets is straightforward.
Suppose we consider 7. First, let K(:%) be the set of all compact sets in <. The
Hausdorff distance is a natural metric for this space. Convergence is defined as follows:
Let [S,] be a sequence of sets and let L be another set. We say that L is the limit of the
sequence {S,] if and only if every open ball B around L contains all the sets [S,.] except a

finite number.
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comfortably covering D;. Furthermore it is clear that expansions of any radius > 27 of
each set would certainly cover the other, while any expansion of radius < 2! about D,
will fail to cover all of D,. In the general case, the radius is of great importance and

determined by the Hausdorff definition.

It is easy to see that the distances of D, to all succeeding dragons are the same,

Va(n+2)

namely 2° . The proof is by induction on ».

1

N

It is easy to see that D(D,,D,, )=

1 1
Suppose D(D,,D,, )<——. [We must show that D(D,,,,D,,,, )< ——5.]

22 2 2

Suppose Dy = a figure of two arbitrary parts, say 4 and B, and Dy, = a figure of two
arbitrary parts, say C and D. Theorem 2 states that, for all compact sets 4, B, C, D,
D(4 v B, Cu D) <max {D(4, C), D(B, D)}. In this particular case, that is

max {D(2" Dy, 27 D), D27 Dy, 27 Dir)y = D27 Dy, 27 Dysy)

=27 D(Dy, Diiy) <27, 274K = ik 192)

Since k was arbitrary, it follows by induction, that D(D,,, D,) < 2~ "

for all n > m.
Since D(D,, D,,) can be made less than any positive g, the sequence of curves that

comprise Heighway’s Dragon is Cauchy with respect to K(F). Since K(7%) Dragon is

complete, it follows that the limit exists!
6.2 Inner and Outer Limits

First, let’s observe inner and outer limits for a sequence of numbers.
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Us Us

Figure 6.4: Nonconverging
sequence in ®

This technique of inner and outer limits assumes that sequences are bounded.
Consider the sequence illustrated in Figure 6.4. Like this example, the vast majority of
bounded sequences do not converge. However, for each bounded sequence, it is possible

to define two numbers called its lower and upper limits.

The characteristic property of the lower and upper limits is that they define a
certain interval. This interval has the property that every open interval that contains it
also contains all but a finite number of points of the sequence. Furthermore, our goal is

to find the smallest such interval.

Let [U,] be any bounded sequence. First, we must define two associated

sequences [4,] and [B,] as follows:

A; = the infimum of the entire sequence.
A> = the infimum of all the terms excluding U,

Az = the infimum of all the terms excluding U, and U,.

A, = the infimum of all the terms excluding U, ... U,.;.
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Similarly,

B = the supremum of the entire sequence.

B, = the supremum of the entire sequence excluding U,.

B3 = the supremum of the entire sequence excluding U; and U,.

B, = the supremum of the entire sequence excluding U, ... U,..

By the Order-Completeness Axiom for ik, we know that each 4, and B, exist
because the sequence is bounded. Moreover, we know that [4,] is increasing and
bounded and [B,] is decreasing and bounded. Therefore, we can conclude that both have
limits. The limit of [4,] is called the lower limit, denoted lim inf U, and the limit of [ B,]

is called the upper limit, denoted lim sup U,.

For example, looking at our original diagram:

\

O

U Ou3

o
Us Us

’ Figure 6.5: Figure 6.4 replicated
‘ here for your convenience

A1 = A, appear to be U,
Az =A4 = As appear to be Us
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we explore the notion of inner and outer limits using intersections and unions

respectively.

In general, let [S,] be a sequence of compact sets. First, we must define

associated sequences of sets, [4,] and [B,] as follows:

A = The intersection of the entire sequence of sets = 51N S2N S3N SaN...

A, = The intersection of the entire sequence of sets except S} = SN S3N SuN...

A, = The intersection of all the sets except S ... Sp.1 = S,N SN

Analogously, define

B, = The Union of the entire sequence of sets = S;w S S30 Sau. ..

B> = The Union of the entire sequence of sets except ) = S Sz Sau...

B, = The Union of all the sets except S ... Sp.1 = S0 S,

Observe that the sequence of sets [B,] is nested (form sets that are gradually
smaller), while sequence of sets [4,] is expanding. Therefore, the limit of the [B,] is

found by taking their intersection, and the limit of the [4,] is found by taking their union.

In the present case, taking the intersection 4; of the entire sequence of sets

(Figure 6.7A), we see that it is a region near the origin in the form of a pentagon. For B,
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Therefore, the inner limit and the outer limit appear not to be the same in this

case.
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Conclusions and possible extensions

Generating a sequence of sets according to some rule produces fractals; the actual
fractal is the limit of the sequence of sets. There are a number of methods of determining
whether a limit exists, the most useful being that of the Hausdorff Distance. We also
explore the use of inner and outer limits. We have discovered that while Heighway's
Dragon is a convergent sequence according to the Hausdorff Metric, using Inner and
Outer Limits, Heighway's Dragon does not converge. We used Heighway's Dragon as a

representative fractal.

As a possible extension, it would be interesting to find whether one type of
convergence implies convergence with respect to another. For example, if we knew that

a set was inner and outer convergent would it be Hausdorff convergent?
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Appendix A

/************************************

Heighway's Dragon *
HeighwaysDragon.java *
Author: Lindsey Carr *
Date: Summer 2003 *
*
/

Honor's Project
L I I I I I I I I I I I b I b I I I I S I I b I I

*
*
*
*
*
*
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class HeighwayDragon extends JApplet implements
Actionlistener{

private final int APPLET WIDTH = 512;
private final int APPLET HEIGHT = 512;

private final int MIN = 0, MAX = 15;

private JButton increase, decrease;
private JLabel titlelabel, orderlLabel;
private HeighwayDragonPanel drawing;
private JPanel appletPanel, tools;

// set up the components for the applet
public void init () {
tools = new JPanel ();

tools.setlLayout (new BoxLayout (tools, BoxLayout.X AXIS));

tools.setBackground (Color.yellow);
tools.setOpaque (true) ;

titleLabel = new JLabel ("Heighway's Dragon");
titlelabel.setForeground(Color.black) ;

increase = new JButton (new Imagelcon("increase.gi
increase.setPressedIcon (new

Imagelcon ("increasePressed.gif”));
increase.setMargin(new Insets(0, 0, 0, 0));
increase.addActionlListener (this);

decrease new JButton (new ImageIcon ("decrease.gi
decrease.setPressedIcon (new

Imagelcon ("decreasePressed.gif"));
decrease.setMargin(new Insets(0, 0, 0, 0)):

£y

£7))
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decrease.addActionListener (this);

orderlLabel = new JLabel ("Order: 1");
orderlabel.setForeground(Color.black) ;

tools.add
tools.add
tools.add
tools.add
tools.add
tools.add

titleLabel);
Box.createHorizontalStrut (20));
decrease) ;

increase);
Box.createHorizontalStrut (20));
orderLabel) ;

o~~~ o~ o~

drawing = new HeighwayDragonPanel (1) ;

appletPanel = new JPanel();
appletPanel.add (tools);
appletPanel.add (drawing);

getContentPane () .add (appletPanel);

setSize (APPLET WIDTH, APPLET HEIGHT);
}

// determines which button was pushed, and sets the new order
// if it is in range
public void actionPerformed(ActionEvent event) {

int order = drawing.getOrder();
if (event.getSource () == increase)
order++;
else
order--;

if(order >= MIN && order <= MAX)

{
orderlabel.setText ("Order: " + order);
drawing.setOrder (order);
repaint () ;
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/************************************

Heighway's Dragon *
DragonPanel . java *
Author: Lindsey Carr *
Date: Summer 2003 *
*
/

Honor's Project
kA A A A A A A AR A A AR A A A AR A A A AR A A Ak Kk o,k

*
*
*
*
*
*
import java.awt.*;

import javax.swing.JPanel;

public class HeighwayDragonPanel extends JPanel/{

// screen size
private final int PANEL WIDTH = 512;
private final int PANEL HEIGHT = 512;

private int current; // current order

// sets the initial fractal order to the value specified
public HeighwayDragonPanel (int currentOrder) {

current = currentOrder;

setBackground (Color.black) ;

setPreferredSize (new Dimension(PANEL_WIDTH, PANEL HEIGHT));
}

// draws the fractal recursively. Base case is an order of 0
// for which a simple straight line is drawn.
// Otherwise, rotates and dilates the segments.
public void drawFractal (int order, int x1, int yl1, int x3,
int y3, Graphics page)
{
int x2, vy2;

if (order == 1) // base case
{
page.drawline (x1, y1l, x3, y3);
}
else
{
x2 = (x1 + x3 + vyl - y3) / 2;
y2 = (-x1 + x3 + vyl + vy3) / 2;

drawFractal (order - 1, x1, v1, x2, y2, page);
drawFractal (order - 1, x3, vy3, x2, y2, page);
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// initial calls to the drawFractal method

public void paintComponent (Graphics page) {
super.paintComponent (page) ;
page.setColor(Color.green);

drawFractal (current, 128, 128, 384, 128, page);
}

// sets the fractal order to the specified value
public void setOrder (int order) {
current = order;

}

// returns the current order
public int getOrder () {
return current;

}

Figure A.1: Heighway's Dragon of order 15 generated using the Java code above
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