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PREFACE

The following study of Crystallography is by no means
a complete work, but merely an introduction to the deter-
mination and classification of possible crystal structures
in three-dimensional space. I will not try to outline my
work here, or attempt to list its applications but I do feel
that it is applicable to quite a variety of studies and a
basis for further research.

My main attempt in the writing of this has been to
give fellow undergraduate mathematics majors a brief intro-
duction to one of the possible areas of study toward which
their work may lead them, and to provide a basis for the
work of solid state physics students. Further research
in this field also leads to the study of crystal formations
found in nature, as are used by chemists, geologists and
others, and to the study of crystals by x-ray diffraction
methods used extensively by physicists.

In preparation for this work I have reviewed and
applied much of the work in abstract and linear algebra, the
geometry of symmetries and vector spaces. I will at times
presuppose a general knowledge in these fields. PFurther
information on these basics can be obtained from the book

Geometry and Symmetry by Paul B. Yale1, to whom I am very

grateful for his informative and concise approach to the

1Pau1 B. Yale, Geometry and Symmetry (San Francisco,
Holden-Day, Inc., 1968).




field of Crystallography. Another valuable reference is

the International Tables for X-Ray Crystallography2 which I

have used extensively for detailed information and standard

symbols used in crystallographic work.

2International Tables for X-Ray Crystallography, ed. by
Norman F. M. Henry and Kathleen Lonsdale (Birmingham,
England, The Kynoch Press, 1952), vol. I.
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Chapter I

Introduction

Section 1. - What is Crystallography?

Crystallography is the study of the structure, form,
properties, and classification of crystals. From a non-math-
ematical point of view, a crystal may be defined as a struc-
ture in 3-dimensional space which is made up of a»regular
repetition of identical structural units, forming parallele-
pipeds. In order to understand this concept of 3-dimensional
crystals we may look at their equivalent structures, called
tiles, in 2~dimensions. Here we again have a regular repe-
tition of identical units which form parallelograms, and in
both of these cases, in the plane and in space, the parallel-
ograms or parallelepipeds fill the plane or space, respec-
tively. That is, the structures all share sides and there
is no space between them and no overlapping. ]

To determine the possible tiling patterns or crystal
structures that may exist we will slightly alter the word- |
ing of these definitions so that we will be talking about
points in the plane or in space rather than actual structural
units. Then we can apply our knowledge in mathematics to
determine the crystal structures, no matter what the units
such as atoms, molecules, or whatever which the tile or

crystal has in nature. Thus we will now be speaking of




tiles or crystals as having equivalent points rather than
identical structural units. Figure 1-1 shows a tiling
pattern in 2-dimensions and the equivalent points within

two parallelograms are shown.,

Note also in this figure that the tiles completely
£ill the plane with no overlapping, and when we talk about
crystals they will completely fill all of space in this
same manner.

In mathematical terms we can now defime a crystal
structure as follows:

A crystal in 3-dimensional space consists of the union
of a collection of bounded sets with congruent components,
that are space~filling, and intersect only at their bound-
aries. That is, a crystal is the union of a collection of

compact, closed, and bounded sets.



Section 2. - Beginning the Classification of Crystals

Now we may begin to classify crystals, which we know
exist, of course, and are therefore worthwhile studying.
Given any crystal we know that it is made up of finite
parallelepipeds, and thus may be examined from the stand-
point of the finite number of positions and directions
which the points of each parallelepiped may be oriented
in. We are interested first in the distances between any
two equivalent points in the structure, and for simplicity
I will explain these distances in terms of vectors that are
determined by this distance between the points. Then we
will use these vectors to define a lattice, a net-work of
parallelepipeds. Thus a 3-dimensional lattice is an
infinite array of points such that each point has the same
enviromment in the same orientation. A single lattice struc-
ture is called a unit cell and it is chosen for each crystal
as determined by the basic unit parallelepiped which is
repeated in the crystal. Three vectors define a unit cell
in 3~dimensions, and they form the edges of the parallele-
piped. We shall be calling these vectors E,B, and 3, and
their length and direction will be determined differently
for each case that we study. The angles between the
vectors are; a, the angle between b and 3, B, the angle
between ¢ and g, and ¥, the angle between 2 and b. These

lattices that we will define are called Bravais lattices,



after their founder, and may be taken as arrangements of

points in real space, the repeat distance between the points

in any particular direction being proportional, in any
particular case, to the corresponding repeat distance in
the real crystal under study, and thus we have found our
basic unit of classification of all crystals.

The idea of lattices may be approached from a more
mathematical standpoint also. Intuitively vectors corre-
spond to translations of the entire space from one position
to another. For example, the translation corresponding to
a vector of length 1 in the positive x-direction of a real
plane is a translation which moves each point of space 1
unit in the positive x-direction. Therefore a more conven-
ient formulation of the lattice concept is as follows:

Definition: A lattice group, L, is a nontrivial,
discrete subgroup of T, the group of translations, i.e. L
is a lattice group if L# {1}, L is discrete, and every
element of L is a translation.

Note: In our study of lattices that follows we will
be looking at the lattice as a subgroup of the set of all
3-dimensional vectors and also as a group of translations.

Having now introduced our basic unit of classification,
the Bravais lattice, under which we shall place crystals
into seven systems, we find that we can break down this

classification into 230 categories, called space groups.




The éranslations which are the basis of the lattices relate
one part of the crystal structure to another part, but there
are usually (except in the most trivial cases) other symme-
tries of the crystal system which are not translations.
These symmetries include rotations, inversions, and reflec-
tions, and products of these with translations, i.e. glide
reflections and screw displacements.

Definition: A crystallographic space group G is the group

of all symmetries of &a crystal structure. The subgroup
GnT, of all translations im G is a 3~-dimensional
lattice group.
It will then be convenient to classify crystals accord-
ing to the complexity of the non-translational aspect of
the space group. This aspect is referred to as the point

group.

Definition: A crystallographic point group is a subgroup

of the group of symmetries which leaves a point X and

some 3-dimensional lattice containing X fixed.

We will find later that there are 32 such point groups
by which all crystals may be categorized. The symmetries
that will be included in these point groups are rotations
about a line, reflections in a plane, and inversions in a
point, and we can now begin the classification by finding
the restrictions that are placed on some of these symmetries.

For each crystal we have noted that we may choose 3

vectors Z,g,and;g that are the axes of a unit cell for




that crystal. We will also have an axis of rotation for
each crystal, and by determining our choices of vectors 5,
B, and ¢ with respect to this axis of rotation we can

restrict the possible rotational symmetries of a crystal.

Lemma 1-1., If 1 is the axis of rotation p, then we

can choose vectors parallel and perpendicular to 1.

Proof: Suppose 1 is our n-fold axis of rotation.

1. Choose a point p on 1 and a vector 4 3 p€d and gil.
N\ n-1
£ k=0

.+ 3 vectors parallel to 1.

Then we know that pk(g) is parallel to 1.
Let Z be the shortest vector parallel to 1.
2. Now let d 1.
‘n-1 k
> 071 o*(@) -na | 1.
~. 3 vectors, a and b | 1.

Thus we now can choose our three vectors 3,3, and E,
with ¢|| 1, and a,B[c, and we can see that any rotational
restrictions will be dependent of the angle of rotation of
a or b about c. In other words, we may now view our crystal

in two dimensions which makes the following proof easier.

Theorem 1-2. Crystallographic Restriction. Let p be

a non-trivial rotation in a crystallographic point group.

The order of p is 2, 3, 4, or 6.



Proof: Choose & to be the minimal vector to an equi-
valent point in our crystal.
- -1,—> .
Look at p(a) and p (a), Figure 1-2. These
vectors will be the same length as a and any combi-

nations of them must be of the same length or an

integer multiple of this length since each vector in

the crystal must take us to another equivalent point

in it.
Consider p(a) + 0_1(3) - a eld)
o(2) = a(? cose+ 3 sino) .,e%‘;
p—1(§) = a(Y cos 8- 3 sin o)
> = e (&)
a =ai

soop(E) + p-1(g) -a=(2cos6-1)a
By our above statements of reason we know that
2 cos 6 - 1 must be either O or an integer.
Case 1. 6 = 60°
Then 2 cos® - 1 = 0 % there may be a rotation of
order 6.
Case 2., 6 < 60°
2 cos®-1> 0 = this is impossible and thus

the greatest order of rotation that we may have

is 6.
Case 3, 0 = 72°

2 cos®-1 is a fraction, thus p5 is impossible.
Case L. © = 90°

2 cos-1=1232 pu is possible.

Cases 5. & 6. 2(60) = 120° and 2(90) = 180°> 0° and

3

p- are possible.,



We now may conclude that for any p 3 np = 27,

n=2,3,, or 6, and this theorem will now become one

of our basic tools for further study.

Section 3. - Overall Picture

In summary, our work from this point on will be to
try to claessify all possible space groups. We can view
the analysis in the following way:

Each crystal structure determines a unique space group,
which determines a unique point group. There are 32 point
groups in all, which can be classified into 7 crystal sys-
tems, for each of which there is at least one type of lat-
tice. 1Indeed the lattices can be classified into 14 types
called the Bravais lattices. By combining each point group
with all of its associated lattices 230 different space

groups can be realized. Table 1.1 shows the breakdown

into these different groups.

“Tab\e. |.}
Cryotd Saeveme | (SR e e

Teichinie \ 2 2
Monoc\ini o 2 3 '3
Or\"mor\-\om\o(c_, y 5 o
TeXragonal 2 . e

Cuvie 3 - -25:‘
Trigena) : 5 27

Hex agonal ; 3
iTo*?\ﬁi 7 | ‘ﬂij, 32 230

»*
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Chapter I1

Forming the Bravais Lattices

We have noticed in the preceding chapter that each
crystal structure determines a space group, which in turn
determines a lattice group and a point group. In this
chapter we attempt to classify the structures according to
the existence of certain symmetries in their point groups.
The restrictions on rotations that we have found will be
the basis for our choices of what our point groups will look
like. I note at this point that our choice of vectors for
axes for each group may not necessarily be the natural ones
which would seem to arise, but we will be selecting the
preferred or conventional ones which make the work easier

and more applicable.

Determining the lattices :

Suppose that our crystal structure under study has

point group G and lattice group L :
CASE I. G contains a 6-fold fotation p with axis 1.

The lattice will be called the hexagonal lattice and
will be constructed as follows:

Let ¢ be the shortest vector parallel to 1, and we
will consider it to be in the z-axis direction.

2 will be the shortest vector perpendicular to 1,

call it the x-axis direction.
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-

b = 92(;) > P(;) =a +Db and P(g) = -a as shown

in FPigure 2-1.

Note: We choose 92 as the angle ¥ between 2 and b by
convention. This convention being that the angle be
greater than 90°. As we will see later, this convention
makes it possible to use this primitive hexagonal lattice
in another system, the trigonal system, where there is
a 3-fold rotation axis.

These vectors determine the primitive hexagonal lattice

of the Hexagonal system as shown in Figure 2-2, with lattice

points at the vertices of the figure.

2]
] -
i o
_; f'{ / Qﬂﬁ\tfw
/ (A )= 1207
- X (lbAcY= 9o
(5(_8/\2:)“ %o’
f
'
1
]

F{ 5\.\.:“6' l "2
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Before completing our examination of this case we
must consider the possibility of points on a lattice other
than at the vertices. Thus far we have assumed that the
points at the vertices are the only ones, but since we
restrict our choice of vectors for axes there is the poss-
ibility that other points exist that we have missed. The
existence of such points produces a condition which is
called centering for reasons which we shall soon discover,
and we shall find that there are only certain types of

centering which can exist.

Lemma 1: Suppose that L is the full lattice and P is
the primitive lattice generated by E,g, and Z. Then if
- - - — -
there is some d in L which is not in P, d = pa + gb + rc
where p,q, and r are rational numbers, and furthermore, we
may assume the following:

0O0<p=<1, 0€qg<1, and 0 < r <1

- ~ - -
Proof: d = pa + gb + rc for some real numbers p,q, and

r, since E,g, and 3 are independent of each other.
If any of the coefficients is irrational then there
are an infinite number of vectors in L which are contained

in the unit cell.

s

3

But this contradicts the discreteness of L.
If Ip] =1, 91 =m, [rT =n, ( L1 denotes the

greatest integer) replace d by

3 If the term discreteness is unfamiliar I suggest review-
ing its definition in Yale (f.n.1) or in most any
geometry text.

BAEBINTIS aBa.
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-> - - e d
d - 1la - mb - nc
and we can easily see that this equation must be equal to
zero or less than 1 » 0 <p<1, 0pr<1, and

0<qg<1.

The types of centering that we will be finding are as
follows:

1. L is said to be body-centered, I, if it contains
a/2 + b/2 + ¢/2, that is, a point at the center of
each cell as well as at the vertices.

2. L is a face-centered lattice, F, if it contains
a point at the center of each face besides those at
the vertices.

3. L is an end-centered lattice, A,B, or C, if it
contains a pair of points at the center of opposite
faces besides the vertex points. A denotes an end-
centered lattice with points on the x-plane, B, for

points on the y-plane, and C, on the z-plane.

Returning to the Hexagonal system, we must now check
for the centering possibilities so that we can find all the
Bravais lattices.

- - = -

Suppose d = pa + gb + rc is any element of I which is
not in P,

We note first that no two of p,q, or r can be zero

. - = -
since each of a,b, and ¢ is the shortest vector of L in its

own direction.

I Ry
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Case 1. Now suppose r = O

-

- -
d = pa+gb €L

P, q,
Then say p = = and q = — in lowest terms
p. q
2 2
- q2p’| - e
q2d = —-55—- a + q1b

- —

Since q2d and q1b €L
a,P, . q,p a,p

21 3¢ L, hence 21 € 7 ang —2-
p p p
2 2 2

& =a,d-aq78

p1and Py have no common factors, therefore P, divides
a5 which signifies the following:

Every vector or the type pg + qg with O p 1 and

0 q 1 is shorter than a and because we have chosen a to

be the shortest perpendicular to ¢, the only possibility is

P = q = 0 which we have excluded.

Case 2. Suppose either p = 0 or q = 0.

Assume p = 0, then by our earlier remark, neither q

nor r equal zero.

- —> -
Hence 4 = gb + rc where O r 1 and O q 1
d - p’d = (gB + re) - (-ab + rd) = (2q9)B
Jeq =1/2
3+ p33 = (qf + rd) + (=B + re) = (2r)3
Sor =1/2
-
- - - - - - - - b
Henced—pd=(qb+1‘c)+(qa-rc):qb+qa:_2_+

But this is impossible as we have shown in Case 1.

njwy

Ao esss TS

F el rlilal



Case 3. Suppos

+p3§=

al o) o)

_ o3 -
By Case
S d =172

Now since

d - o(d)

But this is a

Tl

e none of p,g, or r = 0

= pg + qg + rc and 0 < p <1, 0<g <1, and O < r <

2rc ® r = 1/2
2p; + 2q§

2, 2p and 2q € Z, hance p = 1/2 and q = 1/2

- — -
a +b + c)
o(a) = a + b and p(b) = -a
=1/2(a + b +¢) -1/2(a + Db - a + e)

1/2a is in L.

-
contradiction of a as our shortest vector.
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CASE II. G contains a 4j-fold rotation P with axis 1, but

no 3-fold rotation.

The primitive lattice will be called the tetragonal

lattice of the Tetragonal System, and we will construct

it as follows:
Choose Z to be the shortest vector parallel to 1
a is the shortest vector perpendicular to 1
b =op(a) > p(b) = -a
Thus we have our primitive tetragonal lattice (Figure
2-3) with a=b #c¢c, and a = 3 =¥ = 90
J -y

o |

/ /

Ftﬁwrc.‘ 2-3

[

We must now consider the possibilities for centering.
Suppose d = pa + gb + rc € L but § P. We need consider
only the same cases as in Case I since g,g, and ¢ are the

shortest vectors in their own directions once again.

Case 1. Suppose r =0

- - -
d = pa + gb €L
P 4
Letting p = — and q = — 1in lowest terms as in Case I
Py as
we have q2d = a + q1

Py

pESi@i] ofei oy Dujwos
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q,p q,p
.. 251 z €1 = 271
P> Po
Since O £ p <1 and O £ g < 1 this case is impossible

E' o .
Z and P, divides a5
- A - -
to have since either d or a + b - d is shorter than a.
Case 2. Suppose either p = O or q = 0

Assume g = 0 and p # O

d = pg + ro and since r #0, 0 <r <1 and O < P <1

2- - -
o d = -pa + rc
s 3 -03=02p8 % p=1/0

d + pd = °rc * r = 1/2

o

e - -
~ pd = pa - pb but this is impossible by Case 1.
Case 3. None of p,q, or r are zero
-> - - -
d =pa+gb+rc and O <p <1, 0<g <1, and O < r <1

°re % r = 1/2

+
©
Q,

h

-
d
d - p23 = 2p§ + ZqB » p=1/2 and q = 1/2

In fact this vector could be in L, yielding a body-

AERIB 8011y Earwooss

centered tetragonal lattice, I. Now we have 2 more
Bravais lattices, the primitive lattice P, and the body-

centered lattice, I, both of the Tetragonal system.
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CASE III. G contains a 3-fold rotstion © with axis k, and
a 4-fold rotation P with axis 1, but no 6-fold
rotation. 1 and k cannot be parallel or perpen-
dicular since otherwise of would be a 12-fold
rotation.

OQur basic lattice will be called the primitive cubic

lattice of the Cubic System, and will be constructed as

follows:
© is the shortest vector parallel to 1
- ->
a = oc¢
B = 0°¢ = oa

By means of a very complicated proof, it can be shown
that a =3 = ¥ = 90 but we will simply assume this fact.
Thus the unit cell of the primitive lattice is a cubic prism,
with a = b = ¢, placing the 3-fold axis k along a diagonal.

Figure 2-4 shows the primitive cubic latt;ce.'

F A
. rd ‘
We hiy GB5SUmE %
6.&'” g GR n“g
JB = —c:' and, 'g - >
-2 ¢ *
F’\suw‘b 2-4

Again we must check for centering possibilities.

- - - -
Let a = pa + gb + rc be € L but ¢ P.

eio0] dujwooge

Bl
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Case 1. Suppose any two of p,q, and r equal zero.

- -
a., If p=q =0 then d = rc with 0 £ r =1

Since g is the shortest vectoe in its direction r must
be either O or 1. Thus this vector produces no new points.

b. Assume q = r = O, then d = pa with O < p < 1

But 02(3) = pg and by Case 1. we have shown that p = 0

or 1, thus there is nothing new.
Case 2. Suppose r = 0, g = 0, or p = 0.
- - -
Assume r = 0. Then d = pa + gb € L,
- - - 2 - - .
cd = pb + qc and ¢ d = pc + ga which are vectors of
length d on the other two planes.
3 - 0°3d = 2pa +2qb » p=1/2 and q = 1/2
Hence we have new lattice points at the center of each
of the faces of the cube besides the vertex points forming
the face-centered cubic lattice, F.
Case 3. Suppose none of p,q, or r are zero.
d = pg + qg + re and 0 < p<1, 0<qgq<1, and 0 < r < 1
d + ng =2rc ® r =1/2
d - ng = 2p§ + 2qg ® p=1/2 and q = 1/2

N
This means that we have a new vector d = +

s

N
ooy

rjod

and in fact this vector is in L, yielding the body-centered

lattice, F, and the body-centered lattice, I.

We now have found three Bravais lattices of the Cubic
System, the primitive lattice, P, the face-centered lattice,

F, and the body-centered lattice, I.

SL3: T090y Bujwoosy
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CASE TIV. G contains a 3-fold rotation, P, and reflections
are parallel or perpendicular to the rotation axis
l. There are no L- or 6-fold rotations.
In this particular case we will form two primitive

lattices of the Trigonal System, the reason for this being

explained as we proceed.
1. The shortest vector is parallel to 1.
Call this vector Z, as we have been doing.
Z will be the shortest vector perpendicular to c

b = pa
What we have formed is the primitive hexagonal lattice
as shown in Figure 2-2. Beér in mind that we may always
form this lattice when G has the above properties,
but the second case we will examine produces a smaller
cell, and thus is more convenient to use in the situa-
tions when it is possible.

2. This case is used when the shortest Vector is neither

parallel or perpendicular to 1.
-
“(

~> —- - - -
Call this vector a, and let b = p(a) and ¢ = P~ (a) = p(b)

We have now formed the rhombohedral lattice, R, as in

Figure 2-5.

LR 10 T P

V. 1 11+ 83
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Centering will not exist in the hexagonal lattice as

we proved in Case I, but we must check the rhombohedral

lattice.

- e
Suppose d € L, and ¥ P. Clearly |d| must be greater

than |a| since a is the shortest vector to a point.

If d is any vector besides the vector to the center

of the cell we can clearly see that it will be closer to

one vertex than Z, thus we need only consider the center

point.

(a.)

(b.)

-
<
2

then we are in a position to pick the hexa-

" —>
+ + is shorter than a,

nim
o)

If the vector E =

gonal lattice, thus there is no centering.
Ir 3 is longer than g, then it is closer than
|2] to another of the vertices, which would

again put us 1n a position to choose a hexa-

gonal lattice.

Thus in the Trigonal System we have only primitive

lattices, the hexagonal lattice, P or the rhombohedral

lattice, R.

EE%i T7iitD sajwoogs
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case V. G contains no 3- or L-fold rotations, but it does
contain two perpendicular axes, of rotations of

order 2, or reflections.

Note: Two perpendicular axes produce a third 2-fold

or reflection axis perpendicular to these.

Figure 2-6 shows the primitive orthorhombic lattice of

the Orthorhombic system, and it is constructed as follows:

;,E, and g are the shortest vectors parallel to the

axes. Thus a # b #c and a = B =3 = 90

e s A

‘:\ﬁu\v e L~ lﬂ

/

- - = -
For centering consider d = pa + gb + re € L, £ P,

Case 1. Suppose r = 0 and we are considering 2-fold rotations.
A. 3§ = pg + qg and we will choose the direction of o
to be along the axis of rotation .
- ~> -
pd = -pa - @gb
- - - >
d - pd =2pa +2adb ® p=1/2 and q = 1/2
If o is the rotation with its axis in the direction of

g, and ©, the rotation with axis along b we find the

following:

T2 GO0 &

Py
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-

od = pa - qb and 8(d) = -pg +qg which make p and g
equal to 1/2 again, and produce only points at the
center of the plane determined by 2 and b. ’
Thus we may have an end-centered orthorhombic lattice, C. i
The same procedure can be followed for p = 0 and q = 0
as for r = 0 and we will find the ecd-centered lattices
A and B respectively. These lattices are of the same
type, depending only upon which face our point is
centéred in, thus they produce only one new category
of lattice called either A,B, or C,.
B. Now consider a reflection mlp and r =0, p=0, or q =0
Assume r = 0

-

- —>
d = pa + gb

Sew vl UG e,
v e ~t-_—z:"-.i§

- - - -
md = pa + gb = d
d+md =2pa+2¢8 » p=1/2 and q = 1/2 1
E

If n is the reflection | a, and k, the reflection |

—>
b, we have

- - - - - -
nd = -pa + gb and kd = pa - gb.
d + nd = 2qg, d - nd = 2p§ » q =1/2 and p = 1/2
d+kd=2pa, d ~kd=29b » q=1/2 and p = 1/2

.+ We have again produced the end-centered lattice C,

and by similar work with p and g and the reflection we get

A and C,

Case 2. Suppose we have any two of the following vectors:
- - - > — — - — —

d = pa +agb, f =qgb + rc, or g = pa + rc

By Case 1, A and B we know that p,q, and r = 1/2
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- —>

Assume d and £ € L but ¢ P

- —> - - = - Ed - Ed

d+ f =pa+gb +gb + rc=pa+ 2qgb + rc which pro-
duces a point at the center of the third face, and by
translation, all 6 faces.

Thus we may have a face-centered orthorhombic lattice, F.

Case 3. Suppose p,q, and r # O

- - - -
d = pa + gb + rec € L but P

4
- - — - - - -
A, pd = -pa - gb + rc and d + pd = 2rc > r = 1/2

d - pd = 2p§ + ZqE * p=1/2 and g = 1/2

and we get the same results with the rotations o and 6.
Note that pa produces a point in the center of an

adjacent cell and likewise with ¢ and ©.

.. We have found the body-centered orthorhombic lattice, I.
- - - - d - >

B. md = pa +gb -rc andd -md = 2r¢c > r = 1/2

- - -
+md = 2pa + 2qb * p = 1/2 and q = 1/2

Q.

s Again we will have the body-centered lattice, I.

Therefore in the Orthorhombic system we may have the
primitive lattice, P, the end-centered lattice, A,B, or C,
the face-centered lattice, ¥, or the body-centered lattice,

I.

BEv=miy G iy CH{NODEE
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CASE VI, G contains no 3- or lL-fold axes, but there exists
a unique axis (2-fold rotation, P, or a reflection, m)
We will form the primitive monoclinic lattice of the

Monoclinic System.

Select'g parallel to the axis, the shortest in that
direction.
1. Suppose ¥ d € L, d = k¢ + 3’ where Eﬂ_; and k € Z
Select ELI, the shortest in its direction.
- —> -
Let bll, b || a, the shortest in its derection
Thus a # b # ¢ and a = 3 = 90 # & determine the
primitive monoclinic lattice shown in Figure 2-7.
- - - - ~
If d = pa + gb + rc € L with 0O Sp,q,r < 1
we may assume r = 0
— - -
e d =pa+gb €L
Then p = q = 0 since every point in the parallelegram
determined by 2 and B is closer to some vertex then B,
which contradicts our choice of b.
Thus there is no centering for this lattice.
2. Suppose 3 4 € L, d = k¢ + 4/ where g’l; and k ¢ Z.

- - - - - -
d ~md = 2rc or d + pd = 2rc

S 2r € Z and since 0 < r < 1, we may assume r = 1/2
—>3—> Z >, 2, . . .
Select d d = 5 + d° when 4/ is minimal
- —)/ - - . . . - | > " .
Choose a = 2d° = 2d - ¢, which implies aWLc and it is
the shortest vector in its direction.

- -
Let b be the shortest vector | ¢, not || to a.
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We have now formed the same primitive monoclinic lattice,
P, as in Figure 2-7.

Checking for centering in the second situations

- - - -
Suppose d = pa + gb + ¢/2 € L
- -
a + ¢

1. We know that > € L by our choices of vectors.
Thus 3 an end-centered lattice, B, when ¢ is the
unique axis.

- -
2., If p=0,4d=aqb +

ey

d - md = 2q§ % q = 1/2 where the plane of reflection
m is normal to B
— — -
or d + pd =2qb » q =1/2
Thus 3 an end-centered lattice, C, when b is the

unique axis.

-

3. If neither p nor q equal zero, d = pg + qg + %
- - -> 8 - - - >
pd = - pa - gb + 5 hence d - pd = 2pa + 2gb

and, p = 1/2 and q = 1/2
.« We have a point at the center of the cell.

But then we may choose the lattice as in 1. and hence
- -
a + ¢

d = =72 and the lattice is end-centered. This change

is shown in Figure 2.7

Thae vechors

PRV |
-y g ’
O R % _,Ck\r’\v& CJ

vtpresaw%~ﬁ§¥um¥&aﬁ
. ;ufhm'\ “ g ‘ph‘"
9«. [t Q b:‘}

VaWice.
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Thus 3 the primitive lattice, P, and the end-centered

lattice, B or C in the Monoclinic System.



CASE VII.
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G contains no rotations of order 2,3, or L and

there are no axes.
Choose & to be the shortest vector in one direction,

- -
b, the shortest not parallel to a, and ¢, the shortest not
This forms the prim-

parallel to the plane through ; & g.

itive triclinic lattice of the triclinic system.
- - - -
= Xa + yb + zc,

In checking for centering suppose d

where x,y, and z are not necessarily integers.

1. y=12 =0

=n+ r wheren € 2, 0 S p <1

Then x =
- - -
e d - na = ra
lra] < |al and .« ra =0 * 1 =0
2e 2 =20
O TS SR
- - < < |= 2l <
Then |d na mb| | 5 | |2| + |2| 'b|
which is impossible.
N N > 2 =2 +12.1/2
3. Fd—n;—mb-lc_;fi(la' + |12>| + e l9)
—
cBleBre, st |
2 2 lc| which is again impossible
1/2
since 32 = 1'232 <1 and our choice of shortest

vectors would be invalid.

Thus there is no centering in this system.

itk

L i4 W
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Chapter III

Point Groups, Holohedry, and Laue Groups

Now that we have found the fourteen Bravais lattices we
can easily construct all the possible point groups for each
lattice. As was mentioned in Chapter I, a point group is a
group of symmetry operations which leave a point X and some
3-dimensional lattice containing X fixed. We will find the
point groups for just one of the systems, the Tetragonal
system, since a thorough coverage of all the systems is very
lengthy and repetitious. The notation used by the Inter-

national Tables for X-ray Crystallography will also be

explained below and used in this work because we will need

it to be able to continue our study.

Notation
1,2,3,4,6 represent x-fold rotations in the given axis.
1,2,3,,6 represent x-fold rotatory inversions in the
given axis.

m symbolizes a reflection in the plane perpendicular to

the given axis.
Section 1. - Point Groups

To begin forming the point groups we choose the axes from a
certain lattice and find all the symmetries in each of these

axes as we have done in the following example of the

e

w

- A
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tetragonal system:

Recall that the tetragonal system contains a L-fold

axis of rotation and we may have the primitive lattice P, or

the body-centered lattice, I. Therefore we will consider

the following five axes:

I S

c, a, b, a + b, a - b

We will initially use the symbols in Figure 3-1 to
represent the elements of the point group by their action

on the faces of a unit cell of the lattice which is centered

at the fixed point X.

Temporary notation using the Cf
axes listed above ¢
Symmetry elements fﬁ A ﬁ
1= tdenlivy / ,
1= (ARI(B®)(ee) 7
4___. = (mep'a) s j
(4. Y= 2-___ = (RAH(BAR) B«
A Y -(H--_)= (Pe'a’'e)
. . /
_2._. = (eel)lee) ,
~-2-- = (ApD(ed) A i
m___. = (ce) C
... = (AR .
- = (Be) }";3\-“‘"&. A-\

Wl

o= (pea’e) (eer)
(H___Y'= (reA'B(ee)
____-m = (A (A'e)
v~ = (AR)(A'e!)
___ a2 = (Aeamied)
___a - = (aex(~'anlee)
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Now we must find all the subgroups of these elements,
and in addition we will combine our five axes to form three
types as is shown below. This is the method used in other

Crystallographic work and is very useful to understand.

Subgroups Note: When we use

. , . the notation X/m,

Axes: ¢, 8, b, a + b, a - b this implies that

both the rotation

Subgroup Number Order and reflection are

of distinct sub- associated with
groups of this type the same axis.
A l i
1 | 2
21\ | 2
1 0 2 2
v\ 2 2 2
AR I 2
v\ el o
Ve 2 2
4 i 4
gy ! H
Rl i 5 4
20\ o 2\ 2 4’
o vl

Z-JQM © - zi_w\m L E
420 ? ¥
m-’v\k .l ??
N e 1 %
"'/rrl\\ | Y

y

s b £
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Finally we choose the subgroups in this list which do
not occur in any of the simpler systems, and we have our
list of point groups for the Tetragonal system:

L, b, 4/m, 422, Lom, Lem, L/mmm

Similar work may be done to obtain a complete list of

point groups for all the systems, this list can be found

in Table 3.1.

i
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Section 2. - Holohedey

Another useful concept in Crystallography relates all
the point groups which leave a particular lattice fixed.
We know that any point group leaves a lattice fixed, so if
we find all the point symmetries that leave this lattice
fixed we have found what is called the holohedry of that
lattice group. This classification is very useful in that
it shows that there are only seven systems possible as well
as making it easy to break down each holohedry and find that
there are only 32 point groups.

The mathematical definition of holohedry is as follows:

Definition: The holohedry of a 3-dimensional lattice ki

group L,at the point X is the group of all isometries, h,

such that h(x) = x and hl(L) =L, i.e. the inner automorphism

(h') 1eaves the lattice invariant.

s

Another definition would be, the largest crystallo-
graphic point group leaving X and the L-orbit of X invariant.

Again we will compute only one case since the work is
tedious, but Table 3.2 lists all the holohedries. Since we
have already worked with the tetragonal system we will do so
again to make the work clearer.
Example:

Consider the primitive tetragonal lattice P. We have
listed all the symmetry elements in Section 1 when finding

the point groups. We then found all the subgroups and then
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the point groups for that system. If you will review the
work that was done there you can clearly see that all of
the symmetry elements are contained in the point group
i/mmm. This is the largest point group which leaves the
lattice fixed, and thus it is the holohedry.

Note that we will also have the same holohedry for
the body-centered tetragonal lattice since the symmetry
elements are the same as for the primitive lattice.

Therefore we can expect and do find one holohedry for
each system, or likewise 7 systems for the 7 holohedries

as listed in Table 3.2.

jzéc\g 3,2
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Section 3. - Laue Groups

In applying our knowledge of Crystallography, especially
to use in X-ray diffraction, there is another important
classification. This classification into what are called

Laue groups deals with the groups that are obtained by adding

a center of symmetry to the point groups. There are 11
centrosymmetrical point groups, and therefore 11 Laue groups,
that is, classes of point groups which become identical
when a center of symmetry is added to those that lack it.
The point group of highest symmetry in each Laue group is
the centrosymmetrical point group, and the symbol of this
is used for the Laue group.

Before developing the Laue groups a brief description
of their necessity and use is helpful. When working with
X-ray diffraction as long as the wave-crystal interaction
is not in the neighborhood of a resonance level, the inten-
sity of X-ray reflection from a crystal without a center
of symmetry is the same as one with this symmetry. That
is, all coherent diffraction effects appear to be centro-
symmetrical, even from non-centrosymmetrical crystals.
Therefore the diffraction effects from a crystal of dany
class is that of the point group symmetry which is obtained
by adding a center of symmetry to their actual symmetry
elements where these are themselves non-centrosymmetrical.
Thus there is reason for this further classification into

Laue groups.
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In forming the Laue groups we need simply to look at
the point groups of a particular system. Take the Tetra-
gonal system again. We have the point groups U, I, L4/m,
422, lpm, [2m, and L4/mmm.

1. Consider L. By adding a center of symmetry we get
an inversion in the center and a reflection with its
plane normal to the axis of rotation. This yields L/m.

2. Consider I, Likewise we add m, yielding lL/m.

3. l/m already contains a center of symmetry, thus it
must be the symbol for a Laue group. This group con-
tains 4, L, and L/m.

ly. Consider 22, A canter of symmetry produces reflec- i
tions in each of the three types of axes plus the
inversion in the center, and we would now symbolize
the group by L/mmm.

5. & 6. lmm and L[2m also do not have a center of
symmetry, but when added yield lL/mmm.

7. L/mmm contains a center of symmetry, thus is the
symbol for another Laue group containing L22, lmm,

Lom, and l/mmm.

Now we have found two Laue groups and similar work in
the other 6 systems will produce the 11 Laue groups as

shown in Table 3.3.
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Chapter IV

Space Groups

We have now found all of the Bravais lattices and all
the point groups. Recall that the lattices contain only the
translations, and the point groups contain the rest of the
symmetry elements without the translations. Our last class-
ification will be into space groups from which both of the
above were derived. Thus we have a group that contains all
the symmetries of a crystal structure. The space group is
actually the smallest group of symmetries of space which
contains the whole lattice group and also the specific
symmetries which we will name.

Remember that we mentioned that the combination of
translations with some of the other symmetry elements yield
new symmetry elements, these being the screw displacement
(a rotation followed by a translation parallel to the axis
of rotation), and the glide reflection ( a reflection
followed by a translation parallel to the plane of reflec~-
tion). Thus every element of a space group can be factored
as ¢ * I'y where o is a rotation, a rotatory inversion, or a
reflection, and I" is a translation.

We will not go through all the cases to develope the
230 space groups, but a list of them is provided in Table
1-1. We will do several relavant examples that will show
the procedure for several different situations, and the reader

should refer to the International Tables for X-ray Crystall-

ography for further help.
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Example 1. Consider the Tetragonal system, in particular
the point group l, generated by a rotation p+ Recall that
the primitive tetragonal lattice is generated by ¢, the
shortest vector parallel to the axis of rotation, & is the
shortest vector perpendicular tolz, and b = p(éﬁ.

The Bravais lattices of the Tetragonal system are the primi-
tive lattice, P, and the body-centered lattice, I, both of

which we must consider in forming the space groups.

Point group - I

I. Lattice ~ P

Consider the kinds of 3-dimensional symmetries that
have p as the non-translational aspect.

Let I’ be the translation determined by &/4, and let L
be the group of translations of P.

(a.) Pu1 is the symbol for the space group generated

by L and oI’ .
Figure -1 demonstrates the action of pr on points in

this group.

o Yy+ o fa+
-.;4-0 ad ‘:1:*0 R
o4 © +
3, o — .
Y4 & 3}42 E"\:S\;\'(t‘ = -y
g * " Note that pr' also induces
I a screw displacemgnt of type
2, with axis |[to ¢ through
the starred points, (3t)
/
o \/4_‘_ : —’1 Ql“l“"
2+0 '8 - %o © +
® + 2 o LC‘, S v\orm&\ A Yae ‘}a!}gc‘\

[+
3yt Bigs
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(b.) Pu2 is the symbol for the space group generated
by L and ore,

Figure lj-2 shows this group.

oY 4+ . © Vl\-
te / * <+ ©
o4 @ 4.
i, © p.°
/ot -+ A rotation of the Lype 2 is
also inducgd by pI', with
‘ axis || to ¢ through the
% X starred points.
g = r‘sur"& 4-2
o Yot % o it
+0 i +o
04. ;x, ©+
“Ya+ Yo

(c.) PMB is the symbol for the space group generated

by L and OF3 and shown in Figure L-3.

o34 ¢ o ¥+
Yro al A
2 LN oy
o
Vgl %ﬁ_ Once again a screw displace-
ment of the type 2, is
produced as in (a.} at the
starred points.
»* *
Figure 4- 3
o34+ : 95/4-\-
1. Vato
= o, % © 4
o °
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(d.) P4 is the space group generated by L and p.
Since rl e L, <L, pr%> = (L, P», thus the space

group 1s the same.
[}

o+
+0 .t % +o
L=F3 S+
3+ 6 40
A rotation of type 2 1is
induced at the starred
points.
.3 *
Fﬁgum, -
ot o+
te . 4o
o x EY ©+
<+ 0 [

We have now considered all the possibilities with P.

IT. Lattice - I

Recall that the lattice I now includes the vector

o —>+—> -
4 = E__fg_i_ﬁ as well as all vectors of P.

Let I' be the translation determined by 2/4, and L, the
group of translations of I.
(a.) I4 is the symbol for the space group generated

by L and p as below.

o+t o+
To :}- +O
°L ! O
+ e | +o : :
E 4 Note that in this group p
3 ‘ induces two types of screw
. Vot displacements, one type lL.
A S Q/a . M
> - at the starred points, (%7,
* ST and type 2, at the points #.
ol
4+, .
ax o+ Figuve -5
-+ +o
O ¢ PV 4



Since we have seen the screw displacement of type “2
is also in IL, it is easy to realize that this group
is essentially the same as the group generated by L
and pFZ. If o is the translation associated with g,
then Po and L generate the screw displacement of
type L.

(b.) Iu1 is the space group generated by L and oI’ as

shown below. .
o

& ‘Iq+ v ”
(/L*_ ©o - e Jete ’ ‘
- oy ; o+
5 O ©
Yoy e )
o | o ? Pl also induces two types of
‘ screw displacements, type uB
0 fd+ at the points #, and simply
oo _ A 2 at the points #.
‘ a - Tk '
Yoy
e . 3i
o Yt o ‘,‘4 ¥ ‘:33\5\@ e M6
LW ) ‘/2'+ o}
/2 [eINS ¢ O+
©3ar 3y's

This group is essentially the same as the group
generated by L and pF3 since we have a screw displace-
ment MB that is generated by L and po, where o is the

translation associated with g.

Thus there are 6 space groups formed from the point

group L in the Tetragonal System.
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Example 2. Consider the Monoclinic system, in particular
the point group, m, generated by the reflection . Recall
that the primitive monoclinic lattice is generated by
vectors ;:6: and Z such that a#b#c and qo=3= 90 # as
shown in Chapter II.

The Bravais lattices of the Monoclinic system are the

" primitive lattice,P, and the end-centered lattice, B (or C,

by our choice of axis of rotation).

Point group - m

I. Lattice -~ P

Consider the kinds of 3-dimentional symmetries that
have m as the non-translational aspect.

Let ' be the translation determined by 572, and let
L be the group of translations of P.

(a.) Pm is the symbol for the space group generated

by L and m, as shown below.

The reflection plane
is parallel to the plane
of projection.

®+ \—:i'swf‘& 7

- Y ‘L' ‘
@+-émwk£%'fwo?mﬁ*“kcne

el T\cﬁjmh& ' 3
Gy éffx TS B

o w8
P e\w«eﬁ T
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(b.) Pb is the space group generated by L and

mpr = b, a glide reflection.

/ '
O+ /@~ O+
7
/ The glide plane is
parallel to the plane

of projection.

- gu.e H-3

We have now considered all the possibilities with P.

ITI. Lattice - B
Recall that the lattice B now includes the vector
(g +28)/2 as well as all vectors of P,
I' will be the translation determined by ¢/2, and L,
the group of translations of B.

(a.) Bm is the space group generated by L and m.

[+ /@*
/ The reflection plane

, is parallel to the

; JKQ)VI‘ plane of projection.
’/’: Yy
/ /

(b.) Bb is the space group generated by L and mI" = b.

Zl'

i

O @—- or

The glide plane is

O Yyt VL e Yot parallel to the plane
of projection.

® - QG
Thus we have found all of the space groups that can be

formed from the point group m.



System

Triclinic

Monoclinic

Orthorhombic

45

Table 4.1
Holehedry Laue group Point group Lattice Space group
1T 1 1 P P1
T P1
2/m 2/m 2 P P2
P21
B or B2 or C2
m P Pm
Pb or Pc
B or Em or Cm
Bb or Cec
2/m P P2 or m
P21 or m
B or B2/m . or
C2/?n :
P P2/  or
P2/e
P21/b' . or
P21/c»
B or B2/b " or
c2/e
mmm mmm 222 P Po22
P2221
P21212
P212121
C cz22

Czz2
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System Holehedry Laue group Point group Lattice Space group

Orthorhombic F F222
(cont.)
I 1222
I412121
mme P Pmm?2
Pmc21
Pec2
Pma?
Pca21
Pnc2
Pmn21
Pbaz
Pna21
Pnn?
C Cmm?2
Cmc21
Cccel
A Amm?Z2
Abm2
Amaz

Aba?
Fdadaz

Ibaz

Imaz



System

Jrthorhombic
(cont.)

Holehedry Laue group Point group Lattice

41

Space group

Pmmm
Pnnn
Pcem
Pban
Pmma
Pnna
Pmna
Pcca
Pbam
Pecen
Pbem
Pnnm
Prmmn
Pben
Pbea
Pnma
Cmem

Cmca

Ccem

Crma

Cecca

Fddd



System

Tetragonal

Holdhedry Laue group Point group

Lattice

Space group

1y /rmm

ly/m by
1y /romm
L
4y /m
L2

Ibam
Ibca

Jmma

Pl
Pl
Pl
Ply,
Iy
1l
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System Holehedry Laue group Point group Lattice Space group

Tetragonal Py 2,2
(cont.) 31
I 22
14,22
Lymm P PLmm
PLibm
Puzcm
Puznm
Phcec
Phnc
Puzmc
Pugbc
I Tlrm
Ihcm
Iu1md
Iu1cd
L2m P Plom
PH?C
PLIz1 m
PH21C
PLm?2
Pﬂb2
Plib2
PLn2



-
Ot

System Holehedry Laue group Point group Lattice Space group

Il 2m
Il 24
Lt /mmm P PLj./rmmm
Pli/mcc
Pl /nbm
Pl /nnc
Ply/mbm
PL/mnc
Pl /nmm
Pl4/nce
Pl /mme
Pl /mem
Pu2/nbc
PL,/nnm
Pu2/mbc
Pu2/mnm
Pl /mme
Pl,/nem
I I /mmm
I4/mem
Iu1/amd
Iu1/acd



System

Trigonal

Holehedry

Laue group Point group

Lattice Space group

3
3m

Wl

32

3m

P P3

P3,I
P3,

R R3
P3

R R3

P P312
P321
P3112
P3,21
P3212
P3,21

R R32

P P 3m1
P31m
P3ec1
P31ec

R R3m
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System Holehedry Laue group Point group Lattice Space group

Hexagonal 6 /mmm 6/m 6 P P6
’ 6 /mmm ¢
P

1
P6

P6

P6
6 P P6
6/m P P6/m

2
L
3

P63/m
622 P P622
P6122
P6_ 22
P6
P6
P6

22
22

22

w =N w

6mm P Pé6mm
Pébcc
P6_cm

3
P6_mc

&m2 P Péiz
Pbc2
P62m
P62c

6/mmm P P6/mmm
P6/mcc
P63/mcm

P63/mmc
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System Holehedry Laue group Point group Lattice Space group
Cubic m3m m3 23 P P23
m3m
F F23
I 123
P P21 3
I 121 3
m3 P Pm3
Pn3
F Fm3
Fd3
I Im3
P Pa3
I Ia3
L32 P PL 32
Ply, 32
F FlL 32
by, 32
I 1432
P P4332
Ply, 32
I I, 32
L3m P PL3m
F Fli3m
I 1l 3m
P Pl 3n

F - Fli3e
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System Holehedry Laue group Point group Lattice Space group
Cubic I 11 34
(cont.)
m3m P Pm3m
Pnin
Pm3n
Pn3m
F Fm3m
Fm3c
Fd3m
Fd3ie
I Im3m

Ta3d
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CONCLUSION

We have now classified all crystal structures into
their basic groups, and have been able to show that these
are the only types of structures that can be-formed.

From this point I hope that others will be able to proceed
on with the study of crystallography in more detail, or
to apply it to work in their respective fields.

Crystallography is a very broad and expanding field,
the study of which has broadened my scope extensively
into the applications and uses of my last four years of
work in mathematics, for this I am very grateful. The
preparatory work for the study was equally as useful as
the findings in crystallography to me, in that I have
had to combine the knowledge that I have obtained from
various mathematics courses, and put it to use. I strong-
ly recommend this study to all mathematics majors, and
hope that they will find the work as interesting and useful

as I have.



