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Preface

This paper details much of the theory and some of the applications of Relativistic
Quantum Mechanics as seen in an Honors Independent Study . The study was largely
problem-based, some of which appear scattered throughout the text as examples of the type
of problems discussed.

This text is divided into 4 parts. Part I, consisting of chapters 1 to 2, reviews
mathematical and theoretical techniques with which the student should be familiar. Part II,
consisting of chapters 3 to 6, is a review of theory that should have been covered
previously. The topics are not dealt with in detail in either of these first two parts as they
are meant purely as a refresher. If the student discovers that a topic does not come back to
memory, he should go back to notes and books from previous sources. Part III, consisting
of chapter 7 examines the Quantum Theory of Measurement, and deals with the
mathematics involved with that theory. Part IV, consisting of chapters 8 to 10, deals with
the extension of this previous material to include relativistic effects.

Part I reviews the mathematics necessary for an understanding of quantum theory.
Chapter 1 deals with mathematics associated with observables and operators, including
inner-products, norms, Dirac's Bra and Ket notation, expectation values, and Hermitean
operators. Chapter 2 investigates eigenvalues and eigenfunctions.

Part II provides an overview of the development of quantum mechanical theory
from classical Newtonian mechanics through the old semi-classical quantum mechanics to
the non-classical quantum mechanics which is the main content of most undergraduate
quantum mechanics courses. Chapter 3 gives a historical perspective for this part, and we
then review some of the concepts of Classical Newtonian mechanics in chapter 4. Chapter
5 looks closer at the experiments and solutions which gave rise to the old quantum theory,
while chapter 6 reviews non-classical quantum theory.

Part III is very brief, and looks at the mathematics and results of the quantum
theory of measurement.

Part IV begins with chapter 8, which looks at the basics of matrices as they pertain
to quantum mechanics. Chapter 9, dealing with orbital and spin angular momenta, utilizes
this concept thoroughly, and pushes us into Dirac's formulation of quantum theory, which
is covered in chapter 10.

The appendix summarizes two different approximation techniques that are useful
for solving problems in quantum mechanics.
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Mathematical Techniques



Chapter 1

Observables
and Operators

This chapter reviews the concepts of observables and their associated
operators, as well as the properties of those operators.

1.1 Observables, Variables, and Operators

An observable is any physical quantity that can be measured. In classical
mechanics the principle observables are position, linear momentum, angular momentum,
and energy. Quantum mechanics adds parity and spin to that list.

According to classical mechanics, observables can be simultaneously measured
with any degree of precision by sufficient refinement of the measurement apparatus.
According to quantum mechanics, by the Heisenberg Uncertainty Principle, this is not the
case.

In classical mechanics, observables are represented by ordinary mathematical
variables. In quantum mechanics, observables are also associated with an operator. One
must now distinguish between the observable A, the variable A, and the operator A.
Distinguishing symbols could be used, but as there is seldom confusion as the meanings
are clear from the context. If there is cause for confusion in a context, the symbol /’i will
be used for the operator, and a plain A for either the observable or the variable.

1.2 Linear Operators

An operator is a law by which we associate with each member of a certain set, a
member of the same set, or of a different set. For the moment, the set of objects
considered will be functions.

Some common operators are the translation operator and the multiplicative operator.

The translation operator is of the form f"f (x) =f (x + C), and the multiplicative operator

is of the form Mf (x) = ¢ -f(x).
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The wavefunctions on which the operators of quantum mechanics operate are called
linear manifolds. A function is a linear manifold if, for any two functions in the set, say
f1and fa, then f3 = c1 - f1 +c2 - f2 isalso in the set.

An operator A is said to be linear if for every f and g of a linear manifold M, and
for all complex numbers ¢ and d,

(1.1a) Af is defined, and
(1.1b) A(cf+dg)=c-Af+d - Ag.
This definition does not require that Af belongs to M for every f of M. If however, Af
does belong to M, for every f of M, then we say that A is strongly linear over M.
When A and B are linear over a linear manifold M, linear operators cA and A + B

are defined by

(1.2) (cA)f = c(Af), and

(1.3) (AL B)f = Af + Bf.

If A and B are strongly linear over M, we can further say that
(1.4) | (AB)f = A(Bf), and

(1.5) A"f =A(A”‘1f),n=2,3,4,....

We say that A = Q over M if and only if Af = O for all fin M.

Problem 1.1: Show that the following equations define linear operators:

@ Af(x)=f(-x

®  Af(x) =f(x)+f(-x)
(%)

(
©  Af(x)=f(x)-f(-x)
@ Af(x)=f(x+c)
2
©  Af(x) =pdd’; =) +qd’;(;) +rf(x)

where p, ¢, and r may be functions of x.!

Tikenberry, p. 68, problem 6.1
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4d? d4 d?
Problem12: Let A == B=- T and C = —5+4. Show that A = B and
ax dx ax

that C = 0 over the linear manifold of all linear combinations of fj =sin2x and

fo =cos 2x.2

1.3 Inner Products and Norms

Many problems in quantum mechanics need the concept of an inner product.
Generally, the inner product (f,g) is defined by

(1.6) (r.8)=] " f*gax.

This is frequently modified in quantum mechanics, depending on the problem, most often
by limiting the bounds of integration to the applicable area. Abstractly, the inner product
(f.g) is a complex number associated with a pair of functions f and g belonging to a linear
manifold M and having properties

(1.7a) (f.8) =(8:)",
(1.7b) (f.f) 20and (f f) = O iff f = 0, and
(1.7¢c) (f ,cg +dh) = c(f,g) +d(f .h).

A linear manifold space for which an inner product is defined is called an inner product
space.

The square-root of the inner product (f,f) is called the norm of f. A function
whose norm equals one is said to be normalized. When working with the Schrédinger
Wave Equation, it is common to set the arbitrary constant equal to the value which
normalizes the wavefunction.

2lkenberry, p. 68, problem 6.2
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Problem 1.3: Show that3

@ (cf.g)=c (f.g)
) (cf +dg,c’f'+d’g’)

=c ' (ff )+ d (f.g')+d c’(g.f)+d d’(g.g")
© (cf+dg,cf +dg)=c c(f.f)+c d(f.g)+cd (g.f)+dd (g,8)
@ (f,g)+(g.f) = areal number
(e) i(f,g)—i(g,f)= a real number

® (f.8)(g.f) = |(f»g)|2

= I(g,f)|2 = a real number

Problem 1.4: Find a constant c so that (cf,cf) = 1, where f # 0.4

Answer: ¢ = eis/-"(f,f)

Problem 1.5: Show that if (f,Ag) = (f,Bg) for all f and g in a linear manifold M, then
A=BoverMS5

1.4 Dirac's Bra and Ket Notation
Dirac developed a very convenient and frequently used notation, in which the

generic symbol W for a wave function is replaced by a ket symbol I ) or is sometimes
written |\|I) The symbol Y, for the n'th wavefunction of an ordered set of
wavefunctions is replaced by the symbol |n), or |\|l n ) The complex conjugate \|I* is
replaced by the bra symbol ( |, or (\yl Similar to above, the symbol ¥, is replaced by

(nl, or (\y n I Also, the operated wavefunction A\V n becomes AI n), or /il vV, )

Obviously, the bra-ket notation for an inner product is

(1.8) (wm Ay ) = (m|A|n) = (ym |A] v ).

3lkenberry, p. 68, problem 6.3

4lkenberry, p. 69, problem 6.4

Slkenberry, p. 69, problem 6.6
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This particular inner product is defined to be the matrix element A mn Of the operator A
between the states m and n. The elements A,,,, are called the diagonal matrix elements of

A. A is said to be in diagonal form if A,,, = O for m # n. Matrix elements will play an

important role in Heisenberg's formulation of quantum mechanics, and in many calculation
techniques in Schridinger’s formulation.
If a is any complex number, then the following rules hold:

(1.92) (w|ad) = a{v|o).
(1.9b) (ay|0) =a”(v|o).
(1.9¢) (w|o)" =(0]w).
(1.9d) (0 +w|=(o|+(v| and
(1.9€) |0 +w)=[0)+|w).

1.5 Expectation Values

In classical mechanics, the state of a system of particles is described at any instant
in time by giving the position and velocity of each particle in the system. Moreover, the
classical observables can be measured to any desired degree of precision.

According to the basic postulates of quantum mechanics, all of the information that
can be obtained about the quantum mechanical state of the system is contained in the
specification of a wavefunction . From this function can be calculated, for example, the
expectation values of observables and the expected uncertainties in their measurement.

The expectation value (A) of an observable A, when the system is in the state
specified by , is:
(1.10) (A) = {vlAlv)
(vlv)
If \y is normalized, this simplifies to:
(1.11) (A) =(v|A]v).

The expectation value of the uncertainty AA, in a measurement of an observable

Ais:

(1.12) AA = ((A—(A))2
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or in another form;

(1.13) (a4)> =(A2>—(A)2.

Problem 1.6: Obtain (1.13) from (1.12).8

1.6 Hermitean Operators

We know that the only possible results of measurements of real observables, such
as position coordinates and components of momentum, must be real numbers. Hence, the
expectation value of a real observable A must be a real number. Since a number z is real if

andonlyif z = z ¥, we readily see that (A) is real if and only if (A\|I| \|I) = (\|I|A\|I).
This equality imposes a stringent condition on the operator A, and leads to the Hermitean
Property of linear operators. There are two definitions commonly used, and it is easy to
show that they imply each other.

First Definition of Hermiticity: A linear operator A is said to be Hermitean over
an inner product space M if and only if
(1.14) (ArlF) =(F|Af)
for every fin M.

Second Definition of Hermiticity: A linear operator A is said to be Hermitean
over an inner product space M if and only if
(1.15) (Af|g) =(f|As)
for every fand g in M.

The second definition implies the first by letting g = f, the first definition implies
the second by replacing f by f + cg. Since they are equivalent, both definitions are equally
strong.

Problem 1.7: Show that the operator A = ¢ is Hermitean if and only if c is real.”

Problem 1.8: Let A be Hermitean. Show that cA is Hermitean if and only if ¢ is real 8

6lkenberry, p. 70, problem 6.10
7lkenberry, p. 71, problem 6.11

8lkenberry, p. 71, problem 6.12
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Problem 1.9: Show that A" is Hermitean if A is Hermittian.9

Problem 1.10: Let A and B be Hermitean. Show that A" B" + B"A™ is Hermitean.
In particular, AB + BA is Hermitean.10

Problem 1.11: Prove thatif Af = ¢f and Ag = dg for certain fand g with finite norms,
and certain constants ¢ and d, where A is Hermitean and ¢ # d, then f and g are

orthogonal. Show also that (flAg) = ( and (glAf) =0.11

Problem 1.12: Let a wave function J with finite norm satisfy the equation

ih % Y = Hy. Show that, if H is Hermitean, then %(\V'\V) =0.12

Problem 1.13: A projection operator P which projects functions f onto a given function g,
which has unit norm, may be defined by Pf = (g | f ) g. Show that P is Hermitean, and
that P2 = P13

1.7 Anti-Hermitean Operators

There are certain operators in quantum mechanics for which the expectation value is
always a purely imaginary number. A complex number z is pure imaginary if and only if
zZ=-z *. From this we readily see that the expectation value of the operator A is purely
imaginary if and only if (\VIAW) = —(A\y|\y). This gives us two definitions as in the
previous section.

First Definition of Anti-Hermiticity: A linear operator A , A # 0, is said to be Anti-
Hermitean over an inner product space M if and only if, for every fin M,

(1.16) (r|1Af) = —(Ar|r).

9lkenberry, p. 71, problem 6.13
10|kenberry, p. 71, problem 6.14
11ikenberry, p. 71, problem 6.17
12|kenberry, p. 71, problem 6.18

13|kenberry, p. 71, problem 6.20
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Second Definition of Anti-Hermiticity: A linear operator A , A # 0, is said to
be Anti-Hermitean over an inner product space M if and only if

a1 (Fl4e) = ~(Arle)
for every fand g in M.

Problem 1.14: Prove the equivalence of the two definitions of anti-Hermiticity.14

Problem 1.15: Show that the operator A = ¢ is anti-Hermitean if and only if C is pure
imaginary.15

Problem 1.16: Let A be Hermitean, A # 0, and B be anti-Hermitean. Show that IA is
anti-Hermitean, and that /B is Hermitean.16

Problem 1.17: Let A = -f; and B = i-‘-id; over the linear manifold of square-integrable

wave functions. Show that A is anti-Hermitean and B is Hermitean.17

1.8 Adjoint Operators
A general theorem from the theory of linear operators states that if A is any linear
operator over a linear manifold M, there exists a linear operator B over M such that

(f IAg) = (Bfl g) for all fand g in M. We call B the adjoint of A, and denote it by the
symbol A T. Notice that if A is Hermitean, AT = A; while if A is anti-Hermitean,

AT = —A. This gives us useful working definitions of Hermiticity and Anti-Hermiticity.
As with Hermiticity and Anti-Hermiticity, we have two equivalent definitions.

First Definition of A T.‘ Atis called the adjoint of A over an inner product space
M if and only if

(1.18) (ATf|f) = (r|Af)
for every fin M.

14|kenberry, p. 72, problem 6.21
15|kenberry, p. 72, problem 6.22
1€|kenberry, p. 72, problem 6.23 and 6.24

17|kenberry, p. 72, problem 6.25
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Second Definition of A T: A ¥ is called the adjoint of A over an inner product
space M if and only if

(1.19) (ATf|g> =(f|Ag)

for every fand g in M.
Some useful properties of the adjoint follow. It is left to the reader to prove any
that are not immediately obvious.

(1.19) A=cifandonlyif AT =¢¥,
¥ T
(1.20) (A ) = A,
1.21) (4B)" =BTAT, ana
(1.22) L, =A+iBand L_ = A —iB are adjoint operators.

1.9 Commutators
Two linear operators A and B over a linear manifold M are said to commute if

(1.23) A(Bf) = B(Af)

for every fin M. This is generally written AB = BA for brevity. Two linear operators A
and B over a linear manifold M are said to anti-commute if

(1.24) A(Bf) = -B(Af)

for every fin M. This is generally written AB = —BA for brevity.

Due to the importance of the commutation relation, we associate an operator with
the concept. This operator is called the commutator of A and B, and is defined by
(1.25) [A,B] =AB - BA

over M. A and B commute if [ A, B] = 0, and they anti-commute if [ A, B] = 2 AB.

The basic properties of the commutator are as follows. It is left up to the reader to
prove any that are not immediately obvious.

(1.26) [A,B] =-[B,A],
(1.27) [A,B+C]=[A,B]+[A,C],
(1.28) [A,BC] = B[A,C]+[A,B]C, and

(1.29) [AB,C] = A[B,C] +[A,C]B.
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Problem 1.18: Show that if A and B are noncommuting Hermitean operators, then [A ,B]

is anti-Hermitean and i [A ,B ] is Hermitean.18

Problem 1.19: Prove that the product of two Hermitean operators is Hermitean if and only
if they commute.19

18|kenberry, p. 74, problem 6.37 |

19/kenberry, p. 74, problem 6.38



Chapter 2

Eigenfunctions
and Eigenvalues

This chapter looks at the usefulness of Eigenvalue problem-solving techniques,
and their applications to operator-observable pairs in quantum mechanics. A central
problem in quantum mechanics is the finding of eigenvalues and eigenfunctions of
linear operators, usually associated with real observables. Of particular importance
are the energy and angular momentum eigenvalues and eigenfunctions.

2.1 The Eigenvalue Problem

If A is an operator defined over a linear manifold M, and f is any particular
function in M, such that there exists a number @ such that
2.1) Af =a f,
then f is called the eigenfunction of A and a is called the eigenvalue of A. If the linear
manifold M is also an inner product space, then

(2.2) (f Af)=a(f ,f), or
2.3) (flalf)=a(flr).

If A is Hermitean, then it has only real eigenvalues, and the eigenfunctions belonging to

different eigenvalues are orthogonal (see problem 1.12); further AA = 0. It is also true
that if A is a Hermitean operator, and AA = O for some f, then f'is an eigenfunction of A.

Problem 2.1: Let M be the linear manifold of functions f which are bounded and

differentiable for all x. Find the eigenfunctions of p = —ih ;—x.z 0

iax[h

Answer: Setofallf =ce , a real.

20|kenberry, p. 112, problem 10.1
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Problem 2.2: Let f be an eigenfunction of a linear operator A for A = a@. Show that for
any ¢, f’ = cf is also an eigenfunction of A = a. Note that for any inner product space,

¢ may be chosen sothat(f'lf') =1.21

Problem 2.3: Letf be an eigenfunction of A for A = a, in an inner product space. Show

that, for any polynomial f, <f(A)> = f(a). In particular, (An ) =a" 22

2.2 Linear Dependence and Independence
Recall that a set of k functions f; is said to be linearly dependent if there exist

constants C; , not all zero, such that
k
2.4) D cifi =0.
i=1

A set of k functions f; is said to be linearly independent if there exist no constants Ci»
except ¢; = 0, such that (2.4) holds. Stated differently, k functions f; are linearly
independent if (2.4) implies that all ¢; = O; they are linearly dependent if (2.4) does not
necessarily impiy thatall ¢; = 0.

Frequently there exist more than one linear independent eigenfunction for a single
eigenvalue. That is, there exist at least two functions f and g such that, for some a,

Af = af and Ag =ag, but f # cg. This is called degeneracy. We say that an

eigenvalue with k > 1 linearly independent eigenfunctions is k-fold degenerate. A non-
degenerate eigenvalue is said to be a simple eigenvalue.

Problem 2 .4: Taking M and p as in problem 2.1, show that the non-zero eigenvalues of

p2 are doubly degenerate and that ¢ = Q is a simple eigenvalue.23

21|kenberry, p. 113, problem 10.2
22|kenberry, p. 113, problem 10.3

23|kenberry, p. 114, problem 10.8
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Problem 2.5: Prove that any linear combination of eigenfunctions of an operator A for
A = a is also an eigenvalue of A for A = g.24

Problem 2.6: Show that any k mutually orthogonal functions are linearly independent.25

Problem 2.7: Show that any k linearly dependent functions in an inner product space are

not mutually orthogonal.28

2.3 The Expansion Problem

We can now determine a method for determining the wavefunction \|I( r, t) at any

time £, given the wavefunction \|I(r) attime ¢ = (. The orthogonality of the Hamiltonian
operator for a system, together with a property known as completeness, and Gram-Schmidt
Orthogonalization (which provides a method to find £ mutually orthogonal eigenfunctions
belonging to a k-fold degenerate eigenvalue) give us all of the necessary mathematical
techniques to rigorously prove the results stated in this section. The proof is tedious and
has been omitted.

We find that, given y(r) attime ¢ = 0,

(2.5) \I/(l',t)=ZCj\|lj(l')e_iEjt/h,wherc
=0
(2.6) ¢j =(wjlv).

As an example, recall the orthonormal energy eigenfunctions for particle in a one-

dimensional box 0 < x < a are found to be, for n € {1,2,3,...},
_ 2 [nnx
2.7 WV, —J;sm( P ]

Given \|I(x) =1 in the box, at = 0, we find
(2.8) cn =(Wn W)= (wn|1).

241kenberry, p. 114, problem 10.9
25|kenberry, p. 114, problem 10.10

261kenberry, p. 114, problem 10.11
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which, written out, is
a *
(2.9) Cn =IO Vv, (1)dx

This is solved, and we get

nnx\|ad
(2.10) Cp = mt 2a cos( 5 ) 0
or, simplified,
0 if n even
2.11) cp = |

204 iy 0dd
nw

This we plug into (2.5) and solve, to get

(2n+)n T (2nh)
212)  y,(x,1) Eéns/;)ﬂl_ [ n+ )e h

or, simplified,
oo —iE

2 +1)t
(2.13) Vn(x,t)= 2( 4 Sin[(2n+l)1tx]e (2n h

2ntl)n a
n=0
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Chapter 3

Historical Review

This chapter provides an outline of the problems in classical Newtonian
mechanics that prompted the evolution of quantum mechanics during the first three
decades of this century.

3.1 Overview of Dates

Physics at the turn of the century was in a state of turmoil. People were
discovering that there were experimental observations which, on the basis of firmly
established classical Newtonian mechanics and Maxwellian Electrodynamics, were totally
inexplicable. Over the first three decades of the century these questions were answered,
and the shocking solutions led to a total revision of the philosophy of science. A whole
new way of thinking was needed, for at the core of natural law lay subjective probability,
not objective determinism as according to old classical mechanics.

The observations which prompted the development of quantum mechanics were
threefold. The first dilemma to be solved deals with blackbody radiation. This is the
radiation emitted by a cavity whose walls are maintained at a constant temperature. Theory
based on the wave nature of light was unable to account for the observed frequency
distribution of the radiant energy.

Second, light exhibits interference, and so may be safely assumed to be a wave
phenomenon. However, in examining the photoelectric effect (light hitting metal surfaces
ejects electrons), it was determined that the energy of the ejected electrons is dependent
only on the frequency of the incident radiation, not the intensity as should be expected by
classical light theory.

The third problem involved an experiment by Rutherford in 1911. He established
that an atom has a positive central core, and satellite electrons. However, an orbiting
electron is accelerating, and hence must radiate energy. Due to this loss of energy an
electron should spiral into the nucleus, giving off a burst of ultraviolet light as the electron
and nucleus annihilate. Instead of the continuous spectrum we should see from this, we
see a discrete line spectrum. Also, there is still matter, even though classical mechanics

predicts it should have all annihilated itself in 10_8 seconds after it was created.
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Following is a list of the developments during the beginning of the century which
removed the enigmas posed by these problems:

1901 Planck Blackbody Radiation

1905 Einstein Photoelectric Effect

1913 Bohr Quantum Theory of Spectra

1922  Compton Scattering photons off electrons

1924  Pauli Exclusion Principle

1925 de Broglie Matter Waves

1926  Schrodinger Wave Equation

1927 Heisenberg Uncertainty Principle

1927 Davisson and Germer Experiment on Wave Properties ‘
of Electrons

1927 Born Interpretation of the Wavefunction

In the following chapters we will look at the evolution of quantum mechanics in
more detail.



Chapter 4

Review of Concepts of
Classical Mechanics

This chapter is intended to review some of the fundamental concepts of
classical mechanics that are important to the development of quantum mechanics.
Coordinate systems, cyclic coordinates, Hamiltonian mechanics, and constants of the
motion are discussed.

4.1 Generalized Coordinates

A point particle constrained to move in one dimension is said to have one degree of
Jfreedom. This means that one variable only is needed to uniquely specify the location of
the particle in space. This variable is normally the displacement of the particle from an
arbitrarily specified origin within the dimension.

A point particle constrained to move in two dimensions (a flat plane) has two
degrees of freedom. In this case, two variables are needed to uniquely specify the location
of the particle. Generally one of two systems are used for this: Cartesian coordinates

(x,Y), or Polar coordinates (7 ,0).
Another system with two degrees of freedom is the system of two point particles in
one dimension. This is generally represented by the coordinates (x1 X2 )

A point particle moving in free space (three-dimensions) has three degrees of
freedom. Appropriate coordinates systems for the representation of this system are:
Cartesian coordinates (x,y ,Z ), Cylindrical coordinates (r,0,z), and Spherical
coordinates (r,0,0).

There are definitely other systems with three degrees of freedom. For instance, a
rigid rod in two dimensions, which normally uses two dimensional Cartesian coordinates
along with a coordinate O which describes the angular displacement of the rod from the
horizontal, or a system of three particles in one dimension which uses a similar coordinate
system to that of two particles in one dimension, with a third coordinate added.

Independent coordinates that uniquely determine the orientation and position of a

system in space are called generalized (or canonical) coordinates. It should also be
evident from the previous examples that a system of # generalized coordinates has n
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degrees of freedom, and visa versa. The one further stipulation on the coordinates is that
they are all independent variables.

4.2 Hamiltonian Mechanics

Energy, the Hamiltonian, and Angular Momentum are all very important elements
of classical mechanics, and all have direct counterparts in quantum mechanics that are as
important.

We begin our discussion of the first two of these three vital elements with a review
of constants of the motion. Recall that a constant of the motion is a dynamical function
that is constant throughout time. For instance, in an isolated system (one that does not
interact with other objects in the universe outside the system), the energy function, linear
momentum, and angular momentum are constants of the motion; as is described by the law
of conservation of energy, the law of conservation of momentum, and the law of
conservation of angular momentum.

As an example, consider the hydrogen atom in free space. If we consider it as two
point particles orbiting each other in the absence of a magnetic field, we discover the

following: it has six degrees of freedom. If (x1,Yy],21) are the coordinates of the proton

and (X2 ,y9 ,22) are the coordinates of the electron, then the energy of the hydrogen

atom appear as

2
q

_1 2,02 .2 1 2 ,.2 .2y 9
(4.1) E—2M(,\:l +¥q +zl)+2m(,\:2 +y2+22) i
where M is the mass of the proton, m is the mass of the electron, ¢ is the electric charge,

and dq3 is the distance between the proton and electron (classically). Regardless of the
time at which the energy is measured, it will be a constant.

The constants of the motion for complicated systems are not easily found.
However, Hamiltonian formalism treats this problem directly and simply. Consider, for

example, the energy expression for an electron between two capacitor plates:
q%o

(4.2) E=1mi?+3%+2%)+ z

where we have an electron of mass m and charge ¢, between two capacitor plates
maintained at the potential difference ® () and separated by the distance d. The electron is a

distance z above the bottom plate. Rewriting this expression in terms of the linear

momentum instead of velocity by means of
(43) E(x,y,Z,x,}.’,Z')HH(X,y,Z,Px ,Py ,Pz)
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gives us

9P

2 2 2
(4.4) H = (px” +py” +p; ) +=—1z

The energy, written as a function of the coordinates and momenta is called the Hamiltonian.
One says p, is the momentum conjugate to X.

The equations of motion that replace Newton's second law in Hamiltonian theory
are called Hamilton's equations and are (for a point particle moving in three-dimensional

space):
(4.5a,b) a—H = —Dy oH =X
dx d py
dH . dH .
(4.5¢,d) x =Dy E =Y
(4.5e,f) 3_H =-p, il =z
dz dp,

Now, obviously, for the Hamiltonian corresponding to an electron between capacitor
plates, one obtains:

@6 0H OJ0H _
' dx Jy

This is because the expression for the Hamiltonian contains neither X nor y. When
coordinates are missing from the Hamiltonian like this, they are called cyclic or ignorable.
The momentum conjugate of a cyclic coordinate is a constant of the motion. This property
follows directly from Hamilton's Equations. In our example, we clearly see that

d H[J x = 0 implies that p;, = 0, so py is constant. This also follows for Py. The
other four equations give

) qP
@.7) p; = —TO

The last three equations give us no new information, as they are just the definitions of the

Py =mx py=my p;=mi.

momenta in terms of velocity, but the first equation is the z component of Newton's
Second Law.
As a second example, consider a particle of mass 7 in a constant gravitational field.

We know that the Hamiltonian in this case is H = #(sz +py2 +p22) +mgz.
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From this we readily obtain Hamilton's equations:

4.8) ) _aH_O __aH_O . aH_m
: DPx 3x Py 3y Py 3y g,

and

(4.9) x=-Lp, ¥ =-=py i=Lp,.

The first set of equations yields the following:

(4.10) Px =px(0) py =Dpy(0) F =mg,

while the second set gives:

4.11) mvy =Py mvy, = py mv, =p,.

This could also be written in cylindrical or spherical coordinates; we will now do the later.
The Hamiltonian becomes:

=1,2, 11,2, 1 _ 1 .2
(4.12) H= 5P 35, = Py +5 - = sinzOpe + mgr cos 0.
Exploring Hamilton's equations in spherical coordinates yields:
2 p>
) p
(4.132) p,=% g 711- 3 ¢2 — mgcos®
r r-sin“0 ——
. ~ > Component
Centripetal Force o
of gravity in
radial direction
. 1 pg cos 0 .
(4.13b) P9 = v 3o ~ mgr sin 6
resin- 0 —
Torque from
Torque from Gravity
Centripetal Force
(4.13¢) Py =0 so py =constant .

Problem 4.1: A particle of mass m is attracted to the origin by the force F = -K7.

Write the Hamiltonian for this system in spherical and Cartesian coordinates. What are the
cyclic coordinates in each of these frames?28

28| iboff, p. 18, problem 1.11
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Problem 4.2: A particle of mass m is in the environment of a force field with components

with K constant. (a) Write down the Hamiltonian of the particle in Cartesian coordinates.
What are the constants of the motion? (b) Use the fact that the Hamiltonian itself is also
constant to obtain the orbit. (c) What is the Hamiltonian in cylindrical coordinates? What
are the constants of the motion?29

29 iboff, p. 18, problem 1.9



Chapter 5

Semi-Classical
Quantum Mechanics

This chapter looks at the closely at the problems that are unsolvable by
classical Newtonian mechanics, and the inspired solutions to those problems. This is
the beginning of Quantum Theory, from which it has evolved into a complex field of its
own.

5.1 Blackbody Radiation

The first of the three problems with classical mechanics to be solved was the
problem with blackbody radiation. The problem was observed when a closed, evacuated
container (with a small window in one side) was placed in an oven and held at a uniform
temperature. At sufficiently high temperatures, visible light emerges from the window of
the container. Other electromagnetic radiation is also being emitted, and blackbody
radiation theory must account for how the radiation is distributed throughout the various
frequencies. When the container is held at a fixed temperature, the inner walls emit and
absorb photons at the same rate. Hence, the cavity contains radiant energy, which is in
thermal equilibrium with the cavity walls. Classical theory correctly predicted the radiation
for low frequencies, but at higher frequencies the experimental values rapidly diverged
from the theoretical values. This is called the UV Catastrophe. By analyzing the radiation
escaping through the window, experimenters found that:

a) the energy depends only on the frequency and temperature of the enclosure, and
is not affected by the shape of the enclosure or the material its made from or
contains,

b) for low frequencies, the energy is proportional to the frequency squared,

¢) for high frequencies, the energy decreases exponentially as the frequency
increases,

d) the total amount of radiation energy per unit volume is proportional to the
temperature to the fourth power (the Stephen-Boltzmann Law),

e) The frequency at which the energy is maximal is proportional to the absolute
temperature (Wein's Displacement Law),




Elementary Principles 25

f) the energy density function may be written in the form of Wein's Relation:

v3

— — l .
N E, = (%)

Many people tried to discover a classical solution that fit this data, but none could
be found. Maxwell Planck took a wild shot, and assumed that the energy was quantized
(has only discrete values). Remarkably, this assumption—that energy of radiation with
frequency V exists only in multiples of Planck's constant A—modified existing theory
enough to make experimental results match prediction. Planck’s constant is

h=6.626x10"%" erg-s, and a quantum of radiation of energy AV is called a photon.
(Recall that i = f/ 271.) Now, if we suppose that the total radiation energy per unit

volume in the cavity is U, and u(Vv) dV is the energy with frequency between v and

o0

V +dv, then clearly U = 0 u(v) dv. The correct formula for #(V) which results from

the assumption that E = hv is:

8 hv> (ehv/K,,T _ 1)‘1.

(,‘3

(5.2) u(v) =

This value precisely matches experimental evidence. Quantization of energy
marked the end of classical Newtonian mechanics, and ushered in what we now call the old
semi-classical quantum mechanics. Newtonian mechanics was still valid in its limited
domain: large objects moving at reasonable speeds, but when systems got small, this semi-
classical quantum mechanics needed to be invoked.

5.2 The Photoelectric Effect

The photoelectric effect is a phenomena in which radiative energy is transferred to
bound electrons, liberating them from atoms in a metallic surface. According to classical
theory

a) the velocity of the electrons liberated should increase as the intensity of the light

increased, _
b) a measurable time should elapse after the metal plate is illuminated before a
- current is detected, and

c) the effect should be observed with light of any frequency.
For several years after the discovery of the photoelectric effect it was assumed that these
predictions were valid. In 1902 Lenard conclusively demonstrated that
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a) the velocity of the electrons does not depend on the intensity,

b) the time elapsed before the effect is observed is immeasurable, and

c¢) below a certain frequency (called the threshold frequency) no electrons are

emitted.
He further demonstrated that the velocity of the electrons increases as the frequency of the
light is increased, and that the current increases with increased intensity. The wave theory
of light provides us with no explanation of these observed characteristics.

With the introduction of Planck’s quantized energy though, and Albert Einstein's
realization that radiation has a dual nature everywhere—part wavelike and part corpuscular
(Planck believed that radiation is continuous except in the immediate vicinity of matter)—
Einstein could easily explain the photoelectric effect. It is for this work that Einstein
received the Nobel Prize in 1921, not his theories of relativity as many people believe.

Einstein's arguments went as follows: Let W be the energy required to free an
electron from a metallic surface (the work function). Then the energy hv — W is

1

. S e e . 2 .
available, when a photon "hits" the electron, to give it kinetic energy Smv, where m is

the mass of the electron, and Vv is its speed. We then have

(5.3) %mvz =hv-W.
Electrons for which W is smallest are liberated with the greatest speed:
(5.4 E max =%mvmax2 =hv —Wpin = h(v-vyg)

where V0 = Wi [ is the threshold frequency.

5.3 The Compton Effect

In the photoelectric effect, a photon gives all of its energy to a bound electron. Itis
also possible that only a part of the energy of the photon is transferred to the electron,
resulting in a scattering of the photon. The quantum theory of this scattering of
electromagnetic waves is known as the Compton Effect.

According to classical theory, when a monochromatic electromagnetic wave hits a
charged particle whose radius is much smaller than the wavelength of the radiation, the
charged particle will respond to this changing electric force by oscillating in simple
harmonic motion at the frequency of the radiation (a driven oscillator problem). Since the
charge is accelerated continuously, it will produce electromagnetic radiation of the same
frequency in all directions. This is compatible with experimental evidence for wavelengths
of visible light and all other longer wavelengths of radiation. However, the experimental
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evidence for x-rays is not compatible for this theory; it breaks down as the size of the
particle gets closer to the wavelength.

In 1922 Arthur Compton used the particle-like, quantum nature of electromagnetic
radiation to explain the scattering of x-rays. Because a photon may be regarded as a zero-

rest-mass particle with speed c, the magnitude of the corresponding momentum is given by
(5.5) SE_M _k

The direction of p is along the direction of propagation of the incident wave.

The quantization of energy thus leads to the quantization of momentum in integral
multiples of the momentum of a single photon. From the above equation we see that a
photon's momentum increases with frequency, just as its energy increases with frequency.
Thus the momentum of a high-frequency, high-energy photon (such as a y-ray) will far
exceed the momentum of a low-frequency, low-energy photon (such as a radio photon, or
even a visible light photon).

By all of this we can consider the scattering problem as a collision between a
particle-like photon and a charged particle. Then the problem is solved merely by applying
the laws of energy and momentum conservation. This needs relativistic tools because the
resulting momentum of the charged particle may be extremely large, so we will go through
the derivation here, as a review of relativistic principles.

We take the particle, of rest mass m() and rest energy E = my c2, to be free and
initially at rest. Then applying energy conservation to the collision gives
(5.6) hv+Eqy=hv' +E
where FE is the energy of the recoiling particle after the collision, AV is the energy of the
incident photons, and AV’ is the energy of the scattered photons. Since
(5.7 E=vEqg >Ey
we see immediately that AV’ < hv. Consequently the scattered photon has less energy, a

lower frequency, and a longer wavelength then the incident photon. Remember to avoid

thinking that the scattered photon is merely the incident photon moving in a different

direction. Instead the incident photon is annihilated, and the scattered photon is created.
Turning now to the law of conservation of momentum, we see that

(5.8) p=Ymyv

is the relativistic momentum of the recoiling particle,
_ hv _h

(5.9 PAx = < A

is the momentum of the incident photon, and
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hv’
(5.10) pvo=— =4

is the momentum of the scattered photon. The scattering angle 0 is the angle between the
directions of pj) and p) .
Using the law of cosines leads to the basic equation of the Compton effect:

A = =t =
(5.11) AN =M x_moc(l cos 6).

This gives the increase in the wavelength of the scattered photon. Although this gives the
the wavelength increase unambiguously, we cannot predict in advance the angle any one
photon will emerge.

For visible and other long-wavelength electromagnetic radiation, AA is so small as
to be masked by the thermal motion of the electrons. However, shorter wavelength
radiation easily demonstrates this effect. Clear in any data though, is the existence of both
types of interactions: the classical and the Compton scattering, implying that photons have
both wave-like and corpuscular natures simultaneously.

5.4 de Broglie Matter Waves and the Davisson-Germer Experiment

Having just seen that light has a dualistic nature, we will explore the dualistic nature
of matter, and then look at the hydrogen atom.

In 1924, in his doctoral thesis, Louis de Broglie observed that on the left-hand
sides of the equations
(5.12) E=hv, p=4

appear properties associated with particles, while on the right-hand side of the equations
appear properties associated with waves. He reasoned that if these relations are valid, as
the explanation of the photoelectric and Compton effects indicate, then it is impossible to
obtain a purely wave or purely corpuscular theory of light. This is due to the fact that if
any such theory existed, there could be no relationship equating wave and particle
properties. Further, if the particle and wave aspects of light are inseparable, it might be that
the particle and wave concepts of matter are inseparable also. That is, in order to explain
some aspects of matter, it may be necessary to consider matter as a wave.

When discussing his work, de Broglie made the following remarks: "When I
began to consider these difficulties I was chiefly struck by two facts. On the one hand the
Quantum Theory of Light cannot be considered satisfactory, since it defines the energy of a
light corpuscle by the equation £ = AV containing the frequency V. Now a purely

corpuscular theory contains nothing that enables us to define a frequency; for this reason
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alone, therefore, we are compelled in the case of Light, to introduce the idea of a corpuscle
and that of periodicity simultaneously.

"On the other hand, determination of the stable motion of electrons in the atom
introduces integers; and up to this point the only phenomena involving integers in Physics
were those of interference and of normal modes of vibration. This fact suggested to me the
idea that electrons too could not be regarded simply as corpuscles, but that periodicity must
be assigned to them.

"In this way, then, I obtained the following idea, in accordance with which I
pursued my investigations: that it is necessary in the case of Matter, as well as of radiation
generally and of Light in particular, to introduce the idea of the corpuscle and of the wave
simultaneously; or in other words, in the one case as in the other, we must assume the
existence of corpuscles accompanied by waves. But corpuscles and waves cannot be
independent of each other; in Bohr's terms, they are two complementary aspects of reality;
and it must consequently be possible to establish a certain parallelism between the motion
of a corpuscle and the propagation of its associated wave. The first object at which to aim,
therefore, was to establish the existence of this parallelism."30

Soon after de Broglie's dissertation appeared, Elsasser pointed out that, if
de Broglie's ideas were correct, particles such as electrons should exhibit diffraction
effects. Later that year Davisson and Germer succeeded in observing a diffraction pattern
in low energy electrons reflected from a nickel crystal. This was the proof needed that
matter, as well as light, has a dualistic nature.

5.5 Bohr's Quantum Theory of Spectra

We now return to 1913, when Niels Bohr began investigating another of the
phenomena that classical mechanics could not explain. Most likely you have seen this
phenomena yourself in the lab. When a closed tube is filled with gas, and a voltage is
applied through the tube, the gas glows. If the gas is then examined with a spectroscope or
optical grating, it is seen that only a discrete set of frequencies are emitted. Hence we have
a line spectrum, as opposed to the continuous spectrum that classical mechanics predicts.
Bohr was able to account for the discrete spectra in Hydrogen making two assumptions:

30|kenberry, p. 27-28.
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(1) Hydrogen exists in discrete values of the angular momentum as given by the
relation

(5.13) bp, do=nh

with 7 an integer greater than zero. In these states the atom does not radiate.
The line integral is performed on one complete orbit of the electron about the
nucleus.

(2) When an atom undergoes a change in energy levels, from E, to E,,,

electromagnetic radiation (a photon) is emitted at a frequency V given by

(5.14) hv =|E, —E,|
Recall that condition (1) leads to a discrete set of energies of:
(5.15) E,=-%
n

where R is the Rydberg constant:
4

me -
(5.16) R = =2.18x107!1 erg =13.6 eV
212
Recall also that the calculated radius of the orbiting electron according to Bohr's theory is
n’n?
6.17) In = 5
me

The negative quality of the energy reflects the fact that we are dealing with bound
states. When n = 1, the atom is in the ground state and has energy —R. To ionize the
atom when it is in this state takes +R ergs of energy. The value of 7 when the atom is in
the ground state is

B 2

me2

(5.18) n= = 0.529A.

This is the fundamental length in physics and is called the Bohr radius.

The emission spectra of hydrogen is generated by the values for E ,, in the second
assumption. The frequencies generated (with some minor refinements, eg: accounting for
the motion of the proton) agree to a high degree of accuracy with the data.
Characteristically, the spectrum divides into various series of lines: Lyman, Balmer,
Paschen, etc. These are generated respectively by transitions to the ground state, to the
second excited state, to the third excited state, etc.
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5.6 Wilson-Sommerfeld Quantum Conditions

Wilson and Sommerfeld independently generalized the first assumption of Bohr's
quantization rule (5.13). Their generalization is now called the Wilson-Sommerfeld
quantization rule. Any periodic motion is quantized in such a way that the action integral

is equal to an integral multiple of 4. That is,
(5.20) d)pi dqi =nh

where 7 is an integer.

As an application of this, consider a particle bouncing in a gravitational field of
strength g, off a level and perfectly elastic floor. Given that:

2
(5.21) E=L_, mgz,
2m
we know that this can be rewritten in the form:
p 2
(5.22) E =—%— +mgz,
2m
because the only motion is in the Z direction. Now, solving this for Pz, we get:
(5.23) p; = -JZmE - 2m2gz .
Using the Wilson-Sommerfeld rule we know that
(5.24) nh = d)pz dz,
or, substituting in for Py,
h
(5.25) nh = -[o ° ‘l 2mE - 2m>gz dz.
Making the substitution ¥ = 2mFE — 2m2gz lets us rewrite this as
_1 Z=h0 y
(5.26) nh = 5 u’? du, or
2m*g z=0
hy=E[mg
-1 2 7/
(5.27) nh = 5 (2mE -2m gz)
3m“g

0
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Hence, /
E[fmg
(5.28) (3m2gnh)% =2mE - 2m2gz]0 ,
or, solving this for E, we get
(3m2gnh)%
(5.29) E, = .
2m

This example serves to demonstrate how the Wilson-Sommerfeld rule is used.
Looking now at the hydrogen atom, which is slightly more tricky, we see that, although it
is more involved that the simpler Bohr model, it does give us some benefits.

Picture the electron as moving in an elliptical orbit around the nucleus. The Wilson-
Sommerfeld rule gives

2r
(5.30) Jo =J>p9de=JO P do=2nP = kh

where K is an integer. The choice Xk = 0 may be ignored, since k = O implies P = 0, or
straight line motion into the nucleus. Further, negative values of k need not be considered,

since the motion corresponding to a negative value differs from that corresponding to a

positive value only by the reversal of the direction of travel around the nucleus. The phase
integral, in terms of points designated in Fig 5.1, is

(5.31) J, =§prdr =JABCp,dr+J.CDAp,dr.

Fig 5.1: Geometry for Sommerfeld's treatment of the hydrogen atom
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From the energy equation
1{ 2 P2 ze?

(5.32) H=E=—|p,~ +— |- = aconstant,
2m r2 r
7 2

where an electron is attracted to the origin with force 5 we obtain
r
Ze: P2

(5.33) pr=%.2m| E + ¢ _ 5 =tsqrt.
r 2mr

Now r increases along ABC and decreases along CDA. Hence, by the Hamiltonian
equations of motion we get

(5.34) pr =mr, p, = +sqrt along ABC, p, =—sqrt along CDA.
Therefore
r max rmin
(5.35) J, = J. ~(+sgrt)dr + J (—sgrt)dr
rmin rmax
rmax
(5.36) =2|  (+sqrt)dr
rmin

Sommerfeld evaluated this integral, and, with use of the Wilson-Sommerfeld rule obtained:

(5.37) J, = —27P +2nZe? W’L = sh
2E

where § is the "radial quantum number"” and is an element of the the non-negative integers.
Eliminating P by means of equation 5.30 we find that

21 m
5.38 217 ‘,— =(s+k)h
(5.38) nZe F (s+k)

now, setting n = § + k = "the principle quantum number", and solving for E, we obtain
the energy levels

539 g o _2n’mz%et  ®z?
. " h?n? n?

where R is the Rydberg constant (see equation 5.16).

Comparing this with the energy levels gotten from Bohr's model, we see that the
Wilson-Sommerfeld conditions give the same energy levels for the hydrogen atom as the
simpler Bohr theory gave. The gain is that we are no longer restricted to circular orbits.
However, we cannot yet consider non-periodic motions, nor can we predict transition
probabilities, that is spectrum line intensities.
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Problem 5.1: Determine the Wilson-Sommerfeld energy levels of a plane, rigid rotator of

moment of inertia / about a fixed axis. The classical energy is £ = -12-1 éz = 511- Do 2.3 1

Answer: E, = n2h2/21
Problem 5.2: Determine the Wilson-Sommerfeld energy levels of a one-dimensional

harmonic oscillator. The classical energy is £ = -g—- + —;— kx2.32
m

Answer: E,; = nhv where v = -2-1—,JZ
tYm

Problem 5.3: Determine the Wilson-Sommerfeld energy levels of a particle constrained to
move along the x axis in the region 0 < x < L.33
2.2
h“n
Answer: E, = —-
2mL
5.7 Sommerfeld's Relativistic Treatment of the Hydrogen Atom

At the same time that Sommerfeld was working on the above theory, he realized
that, according to the Bohr formula for the velocity of an electron in a circular orbit

2 : e
vy, =e / nhi, the speed of the electron is so great that the relativistic variation of the mass

of the electron with its speed should not be disregarded. For example, taking n = 1, we
find

2
(5.40) o =L =
hc

137°

[
o=

A Bohr electron in the ground state has a velocity almost equal to 0.01 ¢. With the Wilson-
Sommerfeld elliptical orbits around the nucleus, the velocity of the electron varies, and the
corresponding relativistic variation of the mass of the electron may be expected to affect the
energy levels, resulting perhaps in detectable shifts in spectral lines.

31lkenberry, p. 51, problem 4.8
32|kenberry, p. 52, problem 4.9

33lkenberry, p. 52, problem 4.10
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Sommerfeld therefore calculated the phase integrals Jg and J, taking into account
the relativistic variation of the mass with speed as given by the formula

. -1
(5.41) m= mo(l —%22-) 2.

Setting Jg = kh, J, = sh, as we have seen the Wilson-Sommerfeld quantum condition
implies, and solving the relations obtained for £, he derived the formula
—1/2 ]

(12

(m/;z—_?f

N P

v

(5.42) E=myc?{-1+|1+

A sufficiently accurate approximate to this is given by the formula

2
(5.43) Epi _—:_.2‘1__.9&(?__3]

where n =5 +k.

Notice that the Sommerfeld energy levels depend on both 7 and &, and not only on 7 as
with the Bohr energy levels. This result provides an example of a general rule: The
introduction of a perturbation tends to decrease the degeneracy of the energy levels.
In this example, the variation of mass with velocity may be considered as a perturbation.
The degeneracy is not completely removed, since the energy levels do not depend on the
magnetic quantum number m. When a magnetic field is present, it is found that the levels
do depend on m as well as on n and k. The degeneracy is then completely removed,
unless we consider electron spin.

Problem 5.4: Verify the correctness of equation (5.43) by obtaining the first two terms in

the series expansion of the right-hand side of the energy equation in powers of O 2. {Hint:
use the approximation

1+x V2 =1-1x+3x2
( 2% ¥%

Also use the definition of O and R to introduce the Rydberg constant. }34

34|kenberry, p. 53, problem 4.12



Chapter 6

Non-Classical
Quantum Mechanics

In this chapter we consider further developments of quantum mechanics,
beginning with the Heisenberg Uncertainty Principle, then spending most of the
chapter dealing with aspects of the Schrodinger Wave Equation. The work of
Schrodinger begins the phase of quantum theory known as non-classical quantum
mechanics, as opposed to the previous semi-classical quantum mechanics. It is this
aspect of quantum mechanics to which the majority of an undergraduate course in
quantum mechanics is directed, so what we are doing is reviewing some of the major
topics, not covering them in detail.

6.1 The Heisenberg Uncertainty Principle

Classical Newtonian mechanics is deterministic, in that if we are given all of the
information about a particle, and the forces acting on it, it is possible to calculate precisely
any information pertaining to that particle at any future time. Take for example Newton's
Second Law. It states, that given the initial coordinates and the velocity of a particle, as
well as any forces which affect the particle, the orbit is uniquely determined. This also
holds for a system of particles, and hence, under Newtonian mechanics, the universe is
deterministic.

Quantum mechanics dispels this "nice" deterministic philosophy. With Werner
Heisenberg's paper in 1927, the world had to adopt a new, ambiguous philosophy, for at
the heart of natural law is subjective probability. The implications of Heisenberg's paper
were that if the momentum of a particle is known precisely, then it follows that the position
of that particle is completely unknown.

Quantitatively, if an experiment is set up where the momentum of a particle is
measured, then the measurement of the momentum disturbs the system in such a way that a
subsequent measurement of position is random to a certain degree. Similarly, if the
position is measured first, momentum will be random to an extent. As a derivation of the
Heisenberg Uncertainty Principle, assume that we are preforming a measurement on the
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position of particles with a constant momentum. Let the average of these measurements be

(x). Then we can form the mean-square deviation

(6.1) (Ax)? E((x—(x>)2)-

The standard deviation is labeled Ax. This is also called the uncertainty in x, because, if

Ax is small compared to a typical length in the experiment, one is more certain to find the
value x = (x) , while, if Ax is large, it is not certain what the measurement of x will yield.

Similarly, one can find the uncertainty in any physically observable quantity.
Heisenberg's Uncertainty relation for momentum and position appears as

(6.2) AxApy 2,
which is read as "the uncertainty of x multiplied by the uncertainty of p, is approximately

greater than or equal to /i". (Remember that /i = h/27.) Observable quantities that
follow this relation are called complementary variables. Examples of complementary
variables include:

a) position and momenta (X,py),

b) energy and time (£ ,¢), and

¢) any two Cartesian components of angular momentum (M, , M;).

You may recall that in order to determine whether any two operators are
complementary variables, you check to see if they are commutable. If they are
commutable, than they are compatible, and the Heisenberg Uncertainty relation does not
apply. If, however, they are not commutable, then they are complementary, and the
Heisenberg Uncertainty relation does apply. For a review of the commutator relation, see
Section 1.9.

6.2 Operator Derivation of the Schréodinger Wave Equation
Recall that the Hamiltonian function for a particle in a conservative field is equal to
the total energy:

R 2
(6.3) H(r,p)=—§;+V(r)=E.
This equality between observables implies not that H = E but that

The use of any convenient representation is implied by (6.4), the symbol W not necessarily

implying the position representation. For instance, one could be using the position
representation, the momentum representation, or the k representation.
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As a slight divergence, recall that the correspondences between the previous three
representations are:

(6.5) Vi ©0; ©0;
(6.6) A (—)A (—)Ak

a 0
(6.7) X & zh Ry
(6.8) —zh L & p o k-

Returning now to our derivation of the Schrédinger Wave Equation, recall that for a
specified energy, (6.4) becomes the Schrédinger Time Independent Wave Equation
(STIWE):

(6.9) Hy = Evy.

For an unspecified energy, (6.4) becomes the Schrédinger Time Dependent Wave

Equation (STDWE):

.. 0
(6.10) ' Hy = inSt
Frequently (6.10) is written in the form of (6.9) with the understanding from the context
that E = if ai

Equations (6.9) and (6.10) become the Schrodinger wave equations for a system of
n particles when H is the total Hamiltonian for the entire system, and the wavefunction
(in the position representation) is a function of the time and of the 37 position coordinates
of the n particles.

Problem 6.1: Give the Schrodinger wave equation for a system of 7 free particles, each of
mass m.35

2 L 2 2 2
Answe:—h—za\g+a\g+a\g =iha—w
1 ox;° 9y~ 0z ot

J

3Sikenberry, p. 84, problem 8.1
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Problem 6.2: Give the wave equations in the position and in the k representations, for an
isotropic linear oscillator in three-space dimensions 36

Answers: ———-V2\|l+ ar \|l Evy, (p 2aV2(p Ee.

Problem 6.3: Give the Schrodinger wave equations for a hydrogen atom, taking into
account the motion of the nucleus.37

Answer: —h V2 ——2V2\|l— \|I=E\|l

where m = mass of electron, M = mass of proton, r17 is the distance between the proton

and electron, and Y = y(ry,r3,¢).

Problem 6.4: Give the Schrédinger wave equation for the two electrons in a helium atom,
neglecting the motion of the nucleus.38

2 2 2 2
Answer: —%’;(V‘I’Z + V%)\p+[.€’_ _2e _%J\l; = Ey.

LP) H

6.3 The Schrodinger and Klein-Gordon Equations

Theorists often obtain differential equations which are satisfied by functions
representing wave fields by applying relevant basic principles of physics and suitable
simplifying assumptions. For instance, the equation which governs the motion of waves
along a string is derived by applying Newton's Second Law and assuming transverse
motion in a plane, small displacements, absence of friction, etc.

By using this method, theoreticians have derived the Schrédinger wave equations.
When the correspondences (6.7) and (6.8) are applied to the nonrelativistic dispersion
relation for de Broglie waves associated with free particles in one-space dimension

6.11) o = B,

2m

36lkenberry, p. 85, problem 8.2
37)kenberry, p. 85, problem 8.3

38|kenberry, p. 85, problem 8.4
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we find that

A b oy
12 ] — o — —
(6 ) at 2m axz
is the STDWE for a free particle in one-space dimension. Similarly, when the
correspondences (6.7) and (6.8) are applied to the relativistic dispersion relation
for de Broglie waves associated with free particles in one-space dimension

2 4
(6.13) w2 =k2c2+-’ﬁ;;-i-c—,
leads to
6.14) Ty 22y md

=c
or? ox? n
This is the Klein-Gordon equation for a free particle in one-space dimension. The Klein-
Gordon equation is frequently called the Schrodinger relativistic wave equation.

Problem 6.5: From the nonrelativistic energy-momentum relation
2

_p

(6.15) E = ™ +V(r)

for a particle in a potential field V(r), obtain the Schrédinger time dependent wave equation:
_i g2 _in oY 39

(6.16) ZmV y+Vy =in T

Problem 6.6: From the relativistic energy-momentum relation
2
(6.17) (E - e®)? = (cp — eA) +m()2c4

for a particle of charge e in an electromagnetic field, obtain the Klein-Gordon equation
2 2 eh® 2 — jeh 9P 4 022
— o _ _ 2 +
(6.18)[ h 572 2ieh 5 ieh 5, te D |y

= (—-h2c2V2 +2ihceA -V +ihice(V-A) + e2A2 + m02c4)\y‘4o

391kenberry, p. 59, problem 5.7

40lkenberry, p. 59, problem 5.8
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6.4 Stationary States

Consider a conservative system in which the potential function is a function of the
coordinates only, and not the time. Then the Hamiltonian does not depend explicitly on the
time either. We may thus expect to find solutions of the form

(6.19) y(r,t)=wy(r) -T().

Since H commutes with 7(¢) and i A Ja?; commutes with Y(r), we may write
(6.20) T(¢t)H y(r) = ihw(r)-g;T(t)

when we substitute (6.19) into (6.10). In (6.19) the variables r and ¢ are separable.

Standard arguments lead to the separated equations
(6.21a) Hy(r) = Ay(r), and

(6.21b) ih%T(t) = AT(2),

where A is some constant. This second equation is readily integrated, and omitting the
constant of integration (since it can easily be absorbed by (1)), we obtain

(6.22) T(t) = e MM,

From this and any solution Y(r) of the eigenvalue equation (6.21a), we obtain a
solution

(6.23) y(r,t)=wy(r)-e

of the Schrodinger wave equation.

~ilefh

Wave functions of the form (6.23) are said to represent stationary states. Such
states play a central role in quantum mechanics.

Problem 6.7: Show that, for a wavefunction (6.23) with finite norm, A = (H ) A1

41)kenberry, p. 89, problem 8.12
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Problem 6.8: In the Schridinger wave equation (6.10) let
v = CelW/ h
where W = W(r,t). Show that, in the limit i — 0, W satisfies the Hamilton-Jacobi

equation of classical mechanics:

1 2 CLA
F (VW) +V + 5= = 042

6.5 Physical Interpretation of the Wave Function
In classical continuum mechanics the equation of conservation is

B y.i=
(6.24) = +V:j=0

where p is the density and j is the current. When integrated over a fixed region R of
space, by aid of Gauss's theorem for transforming the volume integral of a divergence into
a surface integral, this gives

(6.25) %JJdeV+JJj-do=O

R o
where G is the surface bounding the region R. There is no net flux through G and the total
amount of matter (or charge) in R remains constant when the surface integral vanishes.

In interpreting an equation of the form (6.24), we are inclined to call the vector
whose divergence appears in the second term a current, and the quantity whose time-
derivative appears in the first term a density.

Looking at the STDWE in three-space dimensions,

2 OV 1 o2
(6.26) ihst =1 Viy vy,

and its complex conjugate,

L0y o2k *
6.27) —lh?— %V v +V\|] ,

42|kenberry, p. 89, problem 8.13
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*
we multiply the former by Y , the later by {/, and subtract the resulting equations, to get
i

P * h * * _
(6.28) 'g(\lf \4!)+V-(ﬁ(\yV\y -y V\u)]— 0,
an equation of the form of (6.24): %J +V-S =0. Hence J = \U*\p is a density, and

S = %(\UV\V* — W*V\p) is a current.

From this we can picture an electron as a cloud of charge with density p varying
from point to point, albeit highly concentrated in a small region. The current j = pu and
the density vanish at a great distance from the center of the cloud. We can represent the
cloud density and current in terms of a wavefunction as follows.

Let 1 satisfy the STDWE and have finite norm. Taking = c\{/1, where ¢ is

chosen to normalize Y/, we obtain a wavefunction which satisfies the STDWE and has unit
norm. Then, as stated above, we may take

ihe

(6.29) p=el=ey y,andj=eS = W(W‘l’* - \U*V\p)

as the charge density and the current density in our cloud picture of the electron.

Problem 6.9: Show that
*
(6.30) S =LRe[y"py]

where the symbol Re denotes real part.43

Problem 6.10: Writing ¥ as W = |yle " show that

(6.31) J=|y|’ andS = %|\|1|2 ve.

Hence the magnitude of Y determines the charge density, this and the gradient of the phase
of ¥ determine the charge current.44

43|kenberry, p. 87, problem 8.6

44\kenberry, p. 87, problem 8.7
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Problem 6.11: For a given ¥ with unit norm define a second wave function Y with unit

norm by
(6.32) y=ylel M
where A is a real constant. Show that:
’ ’ .h 14 ’ ’ ’
(6.33) J=vy "y, and S =é—n—1-(\y Vy' " -y Yy ).45

6.6 Statistical Interpretation of the Wavefunction, Born's Probability Wave
When dealing with waves, if one calls the amplitude function y, the intensity

function will be l\vlz. Bom suggested in 1927 that, when referring to the propagation of

. . . . 2,
particles (since we now know that particles can have wave representations), lwl is more
appropriately considered a probability density. The function s is called the wavefunction

(or state function or state vector) of the particle. Quantitatively, the Born Postulate states

(in Cartesian space): the wavefunction for a particle \y(x ,Y+2,t) is such that
2
(6.34) |\y| dxdydz = P dxdyd:z
where P dxdy dz is the probability that measurement of the particle's position at the time

finds it in the volume element dx dy dz about the point (x,y,z).

This statement is consistent with what we know about the interference of photo:
or electrons. In all cases an interference pattern develops when we examine a large numb

. . - 2.
of particles. The wavefunction \ generates this interference pattern. Where |w| is lary

the probability that a particle is found there is large, and so the intensity is greater at t|
spot.

The rules of quantum mechanics (to be explored in the next section) giv
technique for calculating the wavefunction y to within an arbitrary multiplicative const
As we have seen, the equation that one solves to find y is one of the Schrodir

equations, and is a homogeneous linear equation. Suppose we solve it and obta
function Y. Then A Y is also a solution, where A is a constant. For problems whe

45lkenberry, p. 87, problem 8.8

—
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can be said with certainty that the particle is in a given region of space, we know that

(6.35) _l'v|\|;|2 dxdydz =1

This is the standard property that probability densities must satisfy under the above
conditions.

The wave mechanical expectation values of functions f (x) and g(p), defined by

(6.36a) (f (x))= (ZIW%L\;)
( p)) (‘D|3|(D)

(6.36b)
(o]o)

for wave functions for which the integrals exist, are readily correlated with classical

expectation values by the identifications
*

(6.37a) P(x) = (\\ll’fl :V")
o D
(6.37b) P(p)=5+7——
(@|®)
When the wavefunction has been normalized, we have the simpler relations
(6.38a) P(x)=y"y
(6.38b) P(p)=0"0.

A normed wave function is sometimes called a probability amplitude, and the square of its
magnitude a probability density.

6.7 The Postulates of Quantum Mechanics

In this section, an attempt is made to justify two postulates which provide the
foundation for Born's statistical interpretation of the wave function. These two postulates,
Postulates IV and V, are preceded by the statement of three postulates which have already
been used, without statement.

Postulate I: A state of a mechanical system is completely specified by a wave
function Y. All possible information about the system can be derived from its
wavefunction.

Postulate 1I: To every observable there corresponds a Hermitian operator with a
complete set of eigenvalues.
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Postulate III: For every system there exists a Hermitian operator H, the
Hamiltonian operator, which determines the time variation of the wavefunction during any
time interval in which the system is not disturbed, through the Schrodinger Time
Dependent Wave Equation.

These three postulates need not be discussed further at this point. However, it
should be noted that superposition of states, required by experimental evidence, implies
that quantum mechanical operators are linear. The study of a linear operator results in its
spectral resolution, or the determination of its eigenvalues and eigenfunctions.

Postulate IV: The only possible values which a precise measurement of an
observable can yield are the eigenvalues of the operator associated with the observable.

Postulate V: The wavefunction of a compound system of noninteracting systems
is the sum of the separated wavefunctions.

Postulate V tells us that, when any measuring process is applied to a wavefunction,
and the process involves the separation of an assemblage of non-interacting systems, the
separation process does not alter the wavefunction of any part of the assemblage. Further,
any measurement of an observable in part of the separated system only gives the value of
the separated part.

To show that the Heisenberg Uncertainty Principle does not violate these
postualates, we assume that the wave function ¥ is known immediately before a
measurement of an observable A. In the measurement of A, there is an interaction between
the systems in the assemblage and the measurement apparatus. This interaction is not
included in the Hamiltonian for the systems of the assemblage, hence the STDWE does not
account for the change in the wavefunction produced by the interaction.

6.8 The Schrodinger Picture and The Heisenberg Picture

In the Schrédinger Picture, wavefunctions are time dependent while operators are
considered time independent. In the Heisenberg Picture, though, wavefunctions are time
independent and operators are time dependent. The basic elements of Heisenberg
formalism may be developed by a transformation from the Schrodinger picture. In this
development, wavefunctions and operators in the two pictures, Heisenberg and
Schrédinger, will be distinguished by superscripts H and S respectively.

First we need a formal solution of the STDWE (6.10) in the Schrédinger picture.
Assuming that the Hamiltonian does not depend explicitly on time, the STDWE may be
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solved formally by treating the Hamiltonian as a constant, resulting in:

(6.39) y(r,t) =T_y(r,0), where
(6.402) T = iHih
(6.40b) T, = cHiHh _ (T_)T,
(6.40c) T.T, =T,T- =1.

Since wave functions are time independent in the Heisenberg picture, but time
dependent in the Schrodinger picture, we obtain our starting point from (6.39):

(6.41a) vl = y(r,00=T,y°
(6.41b) ws = y(r,?) :T_\yH.

. . H S .
The relation between the two pictures A°" and A” of an operator A is now

completely and uniquely determined by the requirement that
64 (v o™ )= (v |7 v )

for all wavefunctions. In fact, eliminating W from (6.42) by means of (6.41b), we find
that

643 (' [ A% [y ) = (gt |AS |1y )= (w [raST |y )
Hence, we find that

(6.443) A" —1.A5T
(6.44b) AS =T AT,

Problem 6.12: Show that AH =A S if A and H commute.46

Problem 6.13: Show that [A" BH | =T, (45 BS |1_47

48lkenberry, p. 93, problem 8.19

47lkenberry, p. 93, problem 8.20
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X

Problem 6.14: Let y(x,0)=e%. Calculate W(x,t) from (6.39), using

H P2 Ay 48
T 2m~ 2m dx2’

d

.y 2
ax—iho t/2m where o = -9
dx

Answer: Y(x,t)=e

48|kenberry, p. 93, problem 8.23
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Chapter 7

Quantum Theory of
Measurement

This chapter looks at one of the results of quantum theory — the Heisenberg
Uncertainty Principle — in general form, and its consequences for measurement. We
will find a way to quickly determine whether two observables may be determined
precisely simultaneously on the same system.

7.1 Simultaneous and Repeatable Measurements

In analyzing the results of repeated measurements, one must consider the effect
each measurement has on the state of the system, and any changes in the state between
measurements. Any measurement on a system is gotten by an interaction between the
system and the measurement apparatus. Extreme cases occur when the alteration is
negligible, or when the measurement radically alters the system. An example of the first is
the measurement of the energy of a charged particle by measuring its radius of curvature in
a magnetic field, and example of the second is the measurement of a particles energy by
measuring the length of its track in a Wilson cloud chamber.

A measurement of an observable A is repeatable only if the measurement does not
affect the value of A, and the expectation value of A does not change during the time
between measurements. If A is not a constant of the motion, in any interval when the

system is not disturbed, the expectation value of A will change at a rate of
4d(sy=1 daA
7.1 dt(A)_ ih ([A’H]>+<dt)'

A disturbance is any interaction of the system with its environment that is not accounted for
in the Hamiltonian of the system. Even in the absence of disturbances though, the rate of
change will be zero only when A is a constant of the motion. There may be times, even if
A is not a constant of the motion, when two measurements will be taken in such a short
time interval that the system has not changed appreciably. We call such measurements
simultaneous measurements.
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7.2 Compatible Observables

Suppose a measurement is made of observable A, and is followed immediately by a
measurement of observable B, and is followed by a measurement of observable A again.
The measurement of B will have disturbed the system, and hence the second measurement
of A may be radically different than the first measurement. This suggests the following
definition: the measurement of B is compatible with the measurement of A if the
immediate remeasurement of A necessarily gives a value of a in the same range as the first
measurement of A. If two observables are compatible, successive simultaneous
measurements give repetitive results.

A practical test for compatibility is the commutivity (or lack thereof) of the
observable's operators. Assuming that A and B possess complete sets of eigenfunctions,

then the following are equivalent:

(7.2a) A and B are compatible,
(7.2b) A and B possess a complete set of simultaneous eigenfunctions,
(7,2¢) A and B commute.

Problem 7.1: Show that if two noncommuting operators A and B possess a simultaneous
eigenfunction, then the operator C = | [A,B ] possesses zero as an eigenvalue. Hence,

show in particular that x; and p; do not possess a simultaneous eigenfunction.49

7.3 Compatible Constants of the Motion

If the expectation value of an observable A changes with time, repetitions of
measurements of A would not be expected to give repetitive results. In the definition of
compatible observables we avoid this complication by requiring measurements be
simultaneous. Obviously, this requirement is not necessary for constants of the motion,
whose expectation values do not change as long as the system remains undisturbed.

dA _

T O for all possible

Classically. an observable A is a constant of the motion if

d(A)
dt
for all states. Although these two concepts are not identical, we can apply our knowledge

=0

motions. Quantum mechanically, an observable A is a constant of the motion if

of classical constants of the motion to our search for quantum mechanical constants of the

491kenberry, p. 151, problem 13.1
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motion. In fact, it can be proven that any classical constant of the motion is also a quantum
mechanical constant of the motion. The converse is also true, if the quantum mechanical
observables have classical counterparts.

When we consider two or more quantum mechanical constants of the motion we
encounter a complication not encountered in classical mechanics. If we measure a constant
of the motion A twice, we expect the same answer both times. However, if we measure
another observable B between the two measurement of A, we have disturbed the system in
such a way the the second measurement of A much satisfy the Heisenberg Uncertainty
Relation (Section 6.1) with B. However, if A and B are compatible constants of the
motion, the Heisenberg Uncertainty Relation does not apply, and repetitive measurements
will produce repetitive results.

We say that an eigenvalue of a constant of the motion is a "good quantum number"
because it will produce the same results, regardless of the time development of an
undisturbed system.

Problem 7.2: Show that H, py, py, and p; are good quantum numbers for a free particle

and that these may be united into a compatible set of constants of the motion.50

7.3 Complete Sets of Compatible Observables

Classically, the initial state of a mechanical system is determined by precise
measurements of the position coordinates and conjugate momenta. This will not be
sufficient for quantum mechanical systems, since position and momentum are not
compatible. Instead, we must try to find other measurements which could determine the
state of the system (eg: determine the wavefunction  uniquely).

The only possible results of a precise measurements of an observable A are the
eigenfunctions of the Hermitean operator associated with A. Suppose such a measurement

results in a certain eigenvalue of A, say a j- Then the wavefunction describing the state of

the system is an eigenfunction of A for A = a;. If a; is a non-degenerate eigenvalue then
the wavefunction is uniquely determined, except for arbitrary phase and normalization
factors. If however, a; is a degenerate eigenvalue of A (say k-fold) then the wavefunction

may be a linear combination of k linearly independent eigenfunctions. In this case, we

50|kenberry, p. 157, problem 13.6
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need to measure a second observable B compatible with A. Again, this will result in some

eigenvalue of B, say bj. This may now or may not uniquely determine . If it does, A

and B form a complete set of compatible observables. If it does not the process can be
continued until a complete set is formed. Of special importance are complete sets of

constants of the motion, whose expectation values do not change with time.
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Chapter 8
Matrix Representations

This chapter introduces a technique that is essential to the development of the
mathematics of relativistic quantum mechanics—the ability to represent operators and
. functions as matrices and vectors, respectively. It looks at matrix representations of
eigenfunctions and eigenvalues, and the Hilbert Space Hyp. It then uses these to look

at the Schrodinger Equation, and the transformation to the Heisenberg Picture.

8.1 Linear Algebraic Techniques

If f1.f2 .3, .fp are a set of n linearly independent functions in a linear
manifold M having the property that, given any fin M, there are n constants

€1,C2,C3 ,*,Cp,real or complex such that
n

(8.1) f=>cifi.
i=1

then the c;, which are determined by f and the particular set of functions

f1.f2 .f3 s+ .f n are called components of f relative to the basis f1,f2 .f3 s sf n-

Since the components of frelative to a given basis fully specify f, we may consider the ¢;
as providing a matrix representation of f and write f as the column vector

9

(8.2) fec= 2

Cn

If there exists only a finite number of functions f; in the linear manifold M such
that the representation (8.1) exists for all fin M, then M is finite dimensional. The
dimensionality is the minimum number of basis functions required to do this. When M is a

finite dimensional inner-product space, such as will be important to quantum mechanics, an
orthonormal basis is frequently chosen. Then we have

(8:32) (ilfy) =3,
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(8.3b) ¢i ={fi|f). and
(8.3¢) ci” =(f|f:).

Further, when f has the representation (8.1), its complex conjugate f* has the

representation

n

* * . %

(8.4) f =zci fi .

i=1
This corresponds to the row vector

* * * *

(8.5) f oc =(c1 ,C2 4+ ,Cp )
In general ¢’ # ¢ *, unless the basis functions are real valued.

Problem 8.1: Obtain a basis for the linear manifold of all functions f{x) which satisfy

Lf a5
= +4f = 0.

Answer: {cos2x,sin2x}

Problem 8.2: Obtain an orthonormal basis for the linear manifold of all eigenfunctions of

the squared angular momentum operator M 2 for M 2 - (I +1)nR 2, [ fixed.52

Answer: {Ylml—l <m<land Ylm is the simultaneous eigenfunction of M 2 and M Z}

8.2 Matrix Representations of Operators
If A is a linear operator on a finite dimensional linear manifold M, such that Af is

an element of M whenever f is, and there is a basis set f1,f2 ,f3 ,***,f . then we can

S1lkenberry, p. 206, problem 17.3

52|kenberry, p. 206, problem 17.4
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find a representation of the form (8.1) for any fin M. Moreover, since A f belongs to M,

we can write it as

n
(8.6) Afj =Y aiffi j=1,2, .. n.
i=l1
The sequence of a; I provides a representation of A fj as a column vector,
"
alj
a;
(8.7) Afjeora;=| 7|
\%nj

Further, the sequence of column vectors 4 = (a1 »a7 Ay ), which is the nxn matrix

a1 412t 9

a a v a
(8.8) a=|"# "2 7 T

[ An1 Gp2 0 Qpp

provides a matrix representation of the operator A relative to the basis f1 ,f2 ,f3 ,*** .fn-
For brevity it is common to write A <> 4 and mention the basis set only when necessary.
When M is an inner product space, and the basis functions are orthonormal, we

have

(8.9) aij = (fi]Alf;)- \

However, (8.6) is often more useful in determining the matrix elements.

Returning to some Matrix Algebra, recall that a matrix whose diagonal elements are
the only non-zero elements is called a diagonal matrix. It may be observed from (8.6) that
the matrix (8.8) is diagonal if and only if the basis functions are eigenfunctions of A.

As an example of the technique, suppose we want to obtain the matrix

) .
representations 4 and Bof A = % and B = -(;1—2 over the linear manifold M determined
x

2
by functions f(x) which satisfy %é + m2f = 0, relative to f] = J_IE'COS( mx) and
x
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fr = 71_1?Sin(mx) as a basis. To do this, we look at Af <> Af. Notice that

L i
(8.10) Af=D ‘ECOS( ™ = ﬁsm(mx) o Af
%sin(mx) -‘%COS( mx)
T T
Consequently,
0 -
(8.11) Aaf =[ m]-
m 0

Similarly, we look at Bf <> ‘Bf. Notice that

1 —m?
—=cos( mx) =2_cos( mx)
8.12) Bf = D* ‘/f _ | o 3.
ﬁsm(mx) _JE sin(mx)
Consequently,
2
-m 0
(8.13) Bf = 5 |
0 -m
2
Problem 8.3: Obtain the matrix representations 4 and Bof A = jd; and B = % over
X

2
the linear manifold M determined by functions f(x) which satisfy %é + m2f =0,
/ X

"X and fp = —J-%—;' e "™ as a basis.53

Avcwer: 4| O] gm0
nswer. 4 = 0 —im an 0 —m2

relative to f1 = # e
pi

53|kenberry, p. 208, problem 17.13
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Problem 8 4: Using the simultaneous eigenfunctions Ylm (6,0) of M 2 and M 2, obtain

. . 2 . .
matrix representations of M ,M_ M, .My ,M, ,M“ when restriced to the linear

manifold of functions for which M, = 2h 2 (I =1).54

100 10 0 010
Answer: M2=2r%2|0 1 O|,M, =80 0 O |, M, =~2r0 0 1],
0 0 1 00 -1 000

00
M_=42Kl1 0
01

o O O

010 0 -10
__h — dh | _
R

8.3 Eigenfunctions and Eigenvectors

The vector u such that Au = au for some scalar a is called an eigenvector of A for
A = a. When 4 is a square matrix of order n, the eigenvalue equation Au = Au is
equivalent to a system of # linear homogeneous equations for the n components of . This
system is consistent for only certain values of A, those for which the det(a-Al)=0.
The values of A for which this system is consistent are the eigenvalues of A4.
Corresponding to any eigenvalue, call it a, is at least one eigenvector ¥ such that
Au = au. 1t is almost trivial that any matrix A4 of order n having n distinct eigenvalues
has n linearly independent eigenvectors. It is also easy to interpret previously deduced
properties of linear operators, in particular of Hermitean operators, in terms of matrices.

As an example, suppose we want to find the eigenvalues and eigenvectors of the
matrix A4 in the example in the previous section.

(8.14) af = ,
m O

SO

Yy
(8.15) aA-A =[ m}.

54|kenberry, p.209, problem 17.15
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Now we set the determinant of this to zero to find the eigenvalues, which yields
(8.16) A +m? =0, o0r A =tim.
These are the eigenvalues. The eigenvectors are then

8.17)  f = af] +bfy where fq = —J%cos( mx) and fp = ﬁsin(mx),

the linear combinations of the basis vectors. In the case A = im, f = —if] + if>; while

if A = —im, f = if] — if5.

8.4 The Hilbert Space H
The set of all column vectors ¢ such that
n
(8.18) ¢® = 1im Y ¢;"c,

—>oo’,
n i=1 -—

is called the Hilbert Space H,. There is a one-to-one correspondence between vectors in
H |y and functions in the linear manifold M of all square integrable functions, relative to an

orthonormal basis in M.

It is easy to show that if f <> ¢ and g <> d, where f and g are two square
integrable functions and ¢ and d are their representations in H,, then

(8.19) of +Bg < ac +pd

where the ith components are equal [eg: (Ctf + Bg)i =oc; +Bd;].
All of the results and techniques of sections 8.1, 8.2, and 8.3 apply to Hy, with the

realization that we are now talking about an infinite dimensional vector space, rather than a

finite dimensional linear manifold or inner-product space.

8.5 Matrix Representation of the Schrodinger Equation
We have already seen that any square integrable function may be represented as an
infinite series, or, more particularly, any such wave function may be written in the form

n
(8.20) y(r,r)= lim Y c;(¢)f;(r),
n—)°°j=1

where f1,f2 .f3 ,... is an arbitrarily selected complete orthonormal set in the linear

manifold of all square integrable functions (section 8.1 extended by 8.4), or in the Hilbert
Space Hy. Substituting this into the STDWE we readily obtain
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(8.21) lim chHfj =1ih 11m ij a
t

n—-)°°j_____1

But, because the f] are mutually orthogonal this implies that

H; = 71—
2 ijcj =1 ot
(8.22) ,

where H;j is the element in the ith row and jth column of the matrix representation Hof

the Hamiltonian operator H, relative to the basis. Writing this in matrix form yields

He =i1h—
dt
(8.23) )
This is the matrix representation of the STDWE relative to f1 ,f2 ,f3 ,... as a basis.
The STIWE is written as
(8.24) He=Ec
in matrix representation relative to f1,f5 ,f3 ,... as a basis, and is frequently the starting

point for obtaining approximations to the energy eigenvalues of a system.

8.6 Transformation from the Schriodinger to Heisenberg Picture

Although Heisenberg matrix mechanics are less useful in solving complex quantum
mechanical systems than Schrédinger wave mechanics, it is still an important concept that
should be understood. By emphasizing the importance of observables in physical theory
Heisenberg was led to the formulation of matrix mechanics in 1925, before Schrédinger's
formulation of wave mechanics in 1926. Hence, in the matrix formulation of quantum
theory, matrices were dealt with independent of any relation to a wave equation or wave
function. The introduction of a vector representation for the wave function is necessary in
order to equate the two pictures. Schrodinger did this in 1926.

In the Schrédinger picture, the time development of a mechanical system is
imbedded in the wavefunction. The vector representation, relative to any complete set of
time independent, orthonormal functions, has time dependent components. If for example

we take the time dependent energy eigenfunctions (r,t) as a basis, we write
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[ \
coe iEqt[h

S c e—iE,t/h

(8.25) y(r,t)o ¢ =71 .
—iE,t[h

cpe . \

\ : y

Schrodinger operators, such as the Hamiltonian and the operators for position coordinates

and the components of linear and angular momentum are in general time independent.

In the Heisenberg picture, the time development of a mechanical system is
imbedded in matrices whose elements correspond to physical observables. The vectors on
which the matrices operate have time independent components which are of secondary
importance, so long as we stay in the Heisenberg Picture. If we switch to the Schrédinger
picture, they become more important. This is easily seen by using the time independent

energy eigenfunctions (r,t) as an orthonormal basis for a vector representation of the

wavefunction. We readily see that

(8.26) v,y o =1

%)

where the c's are the same as in the Schrodinger picture. As in Section 6.8, the S and H
denote the Schrédinger and Heisenberg pictures, respectively.
Comparing (8.25) and (8.25) it is easy to see that

8.27) (cH) = e’Ef'/h(cS) , or
J J

(8.28) cH = elﬂt/h cS ,

where H is the matrix representation of the Hamiltonian relative to the set of its

. . . . . iIHtfh
orthonormal eigenfunctions as a basis. In this representation, both # and e / are

. E t/h . .
diagonal matrices, the diagonal elements being £ j and el J / , respectively. This result

appears to be specific to the choice of the energy eigenfunctions as a basis. It is not
though, as can be easily demonstrated by letting T be the matrix for transforming from the
energy eigenfunctions to any other complete orthonormal basis. Then

(8.29a) CS =TTdS,

(8.29b) CH =TTdH,
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S H . L .
where d” and d° are vector representations of the wavefunction in the appropriate

picture relative to the new basis. Substituting these into (8.28) we readily obtain -
(8.30) dt = S

where

(8.31a) H' =THTT,

(8.31b) RECLONE REULT 3

Since (8.28) and (8.30) are of the same form, the choice of basis is unimportant.
To relate matrix representations of operators in the two pictures, write for any
operator A and vector ¢

(8.32a) (Ac)? =afl
(8.32b) (Ac)® =aScS,
However, according to (8.28),

(8.33) (Ac)t! = !t (ac)S,
hence

(8.34) Al H _ gioifhyS .S

Eliminating CH by using (8.28) we have
AHelﬂ{t/th _ elﬂt/hAScS.

(8.35)
But, since cS is arbitrary, this implies

These results are easily seen to be compatible with the results from Section 6.8.

Problem 8.5: Let AS be a time independent Schrodinger operator. Show that any

eigenvalue of A S is also an eigenvalue of A H ss

55|kenberry, p. 218, problem 17.33



Chapter 9

Angular Momentum
and Electron Spin

This chapter looks briefly at the Angular Momentum Operators, and more
closely at Pauli's Theory of Electron Spin.

9.1 The Angular Momentum QOperators
Classically, the angular momentum M of a particle, with respect to the origin in a

chosen rectangular coordinate system, is the vector

‘(9.1) M=r><p=fo+Myf+MZI€,
where

(9.2a) My =yp; —zpy,

(9.2b) My =z2py —xp;,

(9.2¢) M, =xpy —ypx.

The square of the magnitude of M is

9.3) M* =M +M2 M2
In working with relations involving components of 7, p, and M, it is frequently useful to
obtain additional relations affecting cyclic permutations of x, ¥, and z.

Quantum mechanically, with each component of M and with M 2 there are
associated operators which are obtained by replacing in (9.1) and (9.2) the operators
associated with the components of r and p. For example, in the position representation (as
opposed to the momentum representation) the operators for the components of M are

(9.4a) M, =—ih[ya—az—za%],
9.4b — i, 9. _ ,9),
( ) My - lh(z X xaz)

%)
| - _jpf 2~y 2
(9.4¢) M, = zh[xay y ]



Relativistic Quantum Mechanics 65

The commutators of any two of the components can be easily found, and with a
little algebra these relations are discovered

9.52) My My =inM,,
(9.5b) [My .M, | =inM,,
(9.5¢) M, .My ]=imM,,
or, in symbolic form

(9.54d) MxM=imM.
Similarly, we obtain _ .

(9.62) M2 M, =0,
(9.6b) (M2 M, |=0,
(9.6¢) M2 M,|=o0,

or, in combined form

9.6d) L& ,M] - 0.

Thus M 2 commutes with each component of M, but the components of M do not

commute among themselves.

Problem 9.1: Using the Hermiticity of the components of r and p, and the Heisenberg
commutation relations (the commutation of position components and momentum

components), show that the operators for the components of M are Hermitean. Then show

2. .
M © is Hermitean.56

9.2 The Angular Momentum Shift Operators

Two more angular momentum operators that prove very useful in quantum
mechanical theory are the shift operators M, and M_, frequently called the raising and
lowering operator, respectively. These two adjoint operators are defined by
(9.7a) My =M, + iMy,

(9.7b) M_ =M, —iM,.

56|kenberry, p. 163, problem 14.1
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With some little bit of algebra it can be shown that

9.82) M M_ =M?-M,% +#M,, and
(9.8b) M_M, =M?*-M,> —mM,.
With the help of the commutation relations, it can be further shown that
(9.92) [My ,M_] =28M,,

(9.9b) [My My =1M,,

(9.9¢) (M, My | =inM

(9.9d) [My M;]=-nM,,

(9.9¢) [M_ Mx]=-mM_,,

(9.96) [M_.My ] =inM,,

(9.9g) [M_ M,]|=mM_,

(9.9h) [M 2 ,M+] =0, and

(9.9i) (M? M_|=0.

9.3 Eigenvalues and Eigenfunctions of M2 and M,
Since M 2 and M , commute, we look for simultaneous eigenfunctions of both of

them. Suppose Y is one such simultaneous eigenfunction for M 2-XAand M z = H.

Then the following two equations hold

(9.10a) M2Y =AY, and
(9.10b) M,Y =uY.

This implies that

(9.11a) M+M2Y =AM,Y, and
From (9.9d) and (9.9h) we have

(9.122) M MY =M>M.Y, and
(9.12b) MM,Y =M,M,Y -tM,Y.

Substituting (9.12) into (9.11), we find that (9.10) implies
(9.132) M2M.Y = \M,Y, and
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(9.13b) M M.Y =(L+R)M,Y.
From this we conclude that if Y is a simultaneous eigenfunction of M 2 and M ; for

M?% =Xand M z = U, theneither My Y = 0or MY isa simultaneous eigenfunction

of M 2 and M, for M? =X and M, = +%. From this we find by induction that,

our supposition implies (M +) Y=0o0r (M + )k Y is a simultaneous eigenfunction of

MZand M , for M 2 - A and M, = W + k%, where k is any non-negative integer. It

may be similarly shown that our supposition implies (M_ )k Y =0or (M _)k Y isa
simultaneous eigenfunction of M 2 and M , for M Z=Nand M ; =W —kh, where k
is any non-negative integer.

The next step in finding the eigenvalues and simultaneous eigenfunctions of M 2

and M ; is to show that, corresponding to any particular simultaneous eigenfunction Y,

there exist non-negative integers such that
k,+1
(9.14a) (My)" Y =0,and

ky+1 Y =0.

To show this, we start with (9.3) which implies that
9.15) (M2>=(Mx2>+<My2>+<M22>.

From this we readily see, since each of the terms on the right is non-negative, that

(9.16) <M2)2<M22>20.

(9.14b) (M_)

For the simultaneous eigenfunctions (M., )k Y and (M_ )k Y for which M? = A and
M, = 1 % kh, this gives respectively

(9.17a) A 2(}L+kh)2 > 0, and

(9.17b) A Z(u—kh)z > 0.

We get the two equations looked for in (9.14) by letting k1 and k7 be the greatest integers
for which (9.17a) and (9.17b), respectively, are satisfied.
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The next step is to obtain several relations between A, 1, k1 and k7 which enable

us to determine the eigenvalues A and [t From (9.8) we see that

©.18)M_M, (M+k1 )= MZ(M+k1 v) —MZZ(M+"‘ Y)-nM, (M+k1 ¥),
9.180)M L M_ (M_"2 Y) = MZ(M_k2 Y) —MZZ(M_k2 Y) +hM, (M_k2 Y).

Using (9.14) and the eigenvalue relations for M 2 and M , we find that

(9.19a) A=(UL+kiR)(L+kih+Hh),and
(9.19b) A=(L—-kyh)(L—koh—h).

At this point, skipping some algebra, we eventually end up with
(9.20a) u = (ki —kz)h/2 =koh, and
(9.20b) A= +kim) (L +kih+n) =1(1+1)n2

Of the four integers kg ,k1,k2, and [, we may select any two (consistent with the
requirements that k1 + ko be an even integer and k1 and k7 are non-negative), and the
other two can be determined from the equations k1 =/ — kg and k9 =1+ kg. Two
convenient choices are: (1) pick any / 2 Oandlet k9 =0, then kg = -1, k1 = 2/, and
K = —Ih;and (2) pickany / 2 Oandlet k1 = 0,then kg =1, ko =21, and p = [h.
For the same /, the two choices lead to the same sequence of normalized eigenfunctions and
eigenvalues of M 2 and M ,. The first starts with M, = —I#% and by 2/ applications of
M leadsto M, = lh. The second starts with M, = [ and by 2/ applications of M_
leads to M, = —Ih. The variable / has special significance, and is called the orbital
quantum number.

Let us look in more depth at the first choice, ascending the M , scale. We choose
any / 2 O andlet ko = 0. The system of equations
(9.21a) MY, = -1y and

(9.21b) M_Yl" =0,
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determines a simultaneous eigenfunction of M 2 and M ; for M 2= (1+ 1)7‘22 and

M, =-Ih. Let Yl—l be normalized, inner products and norms being defined by
. . . —l+k

integration over the surface of the unit sphere. Define YI by

(9.22) afy;H =mlyt,

k. . .. —Il+k .
where d ; is a constant to retain normalization. YI , where k goes from O to 2/, is a

simultaneous eigenfunction of M2 and M,, M? = I(1+ 1)7’22 and M, =(-1+k)h.
Letting m = —I + k, for k between O and 2/, we may write the above equation as

Hmym _ x,H4m -l
(9.23) dl YI —M+ YI

for —] < m < I. Then, making the next step,

Hm+ly, m+l _ Hm+ly—1 Hm -1y _ Hm y, m+1
@24d ™y ™ - iy —M+(M+ Y, )—M+(dl r™),

or

(9.25) cmymt

JYT =MLY for 1 <m <L

The Ylm are thus determined in sequence, which is why M, is called the raising operator,

beginning with Yl— ! and ending with YII. These eigenfunctions are called surface

spherical harmonics and are given explicitly in terms of associated Legendre polynomials.
The derivation of such is not relevant to our discussion, and can be found in most

undergraduate quantum mechanics texts.

Problem 9.2: Show that Ylm is a simultaneous eigenfunction of M_M_ and M M_ for

M_My =(1-m)(l+m+1)a%and MyM_ = (1 +m)(I - m+1)1°57

57\|kenberry, p. 170, problem 14.19
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9.4 Angular Momentum and Magnetic Moment

What follows for the next few sections is a non-classical development of magnetic
quantum number and spin quantum numbers. We will later see how these two appear as a
consequence of relativistic quantum mechanics.

Picture an electron as a particle of mass mg, charge e, bound to a fixed nucleus by

a central force arising from a Coulomb potential V (). The orbit of the electron is circular
if there is equilibrium between the centripetal force m()r(o2 and the Coulombic attraction

2/.2 . . .
Ze / r~ . From the equality between these two forces we derive an expression for the

classical frequency of orbital motion

(9.26) v== —_L

The mean electric current due to the motion of the electron in its orbit is J = e/ T

where T = 1/ V is the period of the motion. According to the laws of electrodynamics, a

closed current J is equivalent in external effects to a magnetic moment

VA _ Al
(9.27) UM ==~=—7F>

where A is the area enclose by the current, and c is the velocity of light. We wish to find

the relation between the magnentic moment and the angular momentum. According to
classical mechanics M, which is perpendicular to the plane of the motion, is a constant of

P . 2;
the motion, in particular, M = mqgr~¢ = a constant. Hence

2n MT
_ 1J 2.
(9.28) A—2 0 r d¢—2mo.
Elimination of A from (9.27) and (9.28) gives the proportionality between [l pfand M
—eM
(9.29) UM = 2mge’

A magnetic field H (or, more properly, magnetic induction B), interacting with a

magnetic dipole of moment [L \f produces a torque, and hence the causes the angular
momentum M to change at a rate
(9.30) LM =ppxH=

2m

€ _MxH.
OC

From this expression, we see that the time derivative of the angular momentum is
perpendicular to both the angular momentum and the magnetic field. Hence, in the
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presence of a magnetic field, the angular momentum vector precesses around the direction
of H with a frequency that can be found to be

(9.31) ®y = erloc

Classically, 0, the angle between the directions of M and H, may have any value

between 0 and T, inclusive. Quantum mechanically, the only observable values of M 2

and M ,, are the eigenvalues M? = I(1 +1)7’12 and M, = mh, found in the last

section. From these a discrete set of 2/ + 1 values of 0 is calculable from the formula

M
(9.32) cosO=—2=—LB_ —|<m<I.
M I(I+1)
L . . :
The quantity e’ which is the natural unit of magnetic moment, is called the
0

Bohr magneton. The quantum number m, which is directly observable is called the

magnetic quantum number.

Problem 9.3: Show that (AM )(AMy) 2 —;mh2 when M, = mh. [Hint: M, and

M y do not commute, so you may use the Heisenberg Uncertainty Relation.]8

9.5 The Stern-Gerlach Experiment

In the Stern-Gerlach experiment, a spatially inhomogeneous magnetic field serves
to separate atoms for which values of M, for the valence electrons differ. This experiment
would serve to confirm or deny the spatial quantization predicted by (9.32). When the
experiment was performed in 1922, it did indeed confirm the spatial quantization, but there
were some anomalous observations which we will look at in the next section.

The potential energy of a magnetic dipole of moment L in a magnetic field H is

(9.33) U=-u-H.
In an inhomogeneous field the dipole experiences a force
(9.34) F=-VU=V(u-H).

S8|kenberry, p. 173, problem 14. 25
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To avoid considering the rapid variation of F as |l precesses around H, we take the mean
value of F. Since the mean value of |1 is antiparallel to H, we obtain

(9.35) F=V(p,H)=np,VH,

when we make this replacement. Here |l ; is the component of [ in the direction of H.

Finally, using (9.29) we find that the mean force on an atom due to the interaction between
H and the magnetic dipole produced by an orbital electron is

— €
(9.36) F==&"M,VH.

0
In the experiment, magnetic pole pieces are arranged to give a magnetic field H
which varies rapidly in the direction of H. In a typical experiment, dHfdz = 250,000

Gauss per centimeter. Particles injected at 90° to H are deflected by a force whose
component parallel to H is

9.37) F, =KM,,
__e OJH . . . .
where K = Imge 9z From this we find, by integrating twice, that
KM Zt2
(9.38) zZ = ——,
2my

where z is the deflection in the direction of H and ¢ is the time required for an atom to
traverse the field.

Classically, M , and thus z may have any value in a continuum. Hence a spreading
out of the beam toward each side, with a gradual decrease in intensity from the maximum at
the center, would be expected. This broadening into a single wide beam is not observed,
rather there is observed a splitting into a definite number of distinct beams, the number

depending upon the atomic species and its state of excitation. Quantum mechanically, M ,

has only discrete values, M z = mh where m is an integer. The number of beams into
which the original beam is split gives the number of possible values of m. Further, the
magnitude of the magnetic moment of orbital electrons can be calculated from the
magnitude of the splitting and the constants of the apparatus.

9.6 Stern-Gerlach Patterns and Electron Spin

According to the theory developed to this point, the number of components to be
expected in a Stern-Gerlach experiment is equal to the number of possible values of the
magnetic quantum number m. For orbital angular momentum M for which
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M2

the pattern should always have an odd number of components and should always contain

=1 (l + l)h 2, the number of possible values of mis 2/ + 1, an odd integer. Thus,

an undeflected component corresponding to m = 0. However, for many elements,
notably H, Ag, and the alkalis, there are an even number of components, all of them
deflected.

To account for this, and for the observed splitting of excited energy levels by a
magnetic field (called the anomalous Zeeman effect), Uhlenbeck and Goudsmit were led in
1925 to propose that the "point electron” model should be replaced with a "spinning
electron” model. Similar to the orbital angular momentum M for which

M z _ l (l +1)h 2, they proposed that an electron also has a spin angular momentum |s|

2
for which |s| = s(s + l)h 2. Note that the spin angular momentum is denoted by |s|
while the spin quantum number is denoted by s.

To discover the values of the spin quantum numbers, we must consider the
elements for which the Stern-Gerlach experimental values did not agree with the predicted

21 +1 values of M ,. For H, Ag, or an alkali in the ground state, for which n =1,

[l =0, and m = 0, we would expect one undisplaced component. However, two
displaced components are observed. These two components must be explained entirely in

terms of electron spin. Corresponding to the 2/ + 1 values of M ,, let us suppose that
there are 25 + 1 values of §;, each of which accounts for one of the components in the

experiment for H, Ag, or an alkali, in the ground state. Since there are two observed

components, we write 25 + 1 = 2 and find that 5§ = % Then
2

(9.39a) |s| =s(s+1)h2 =%h2, and

(9.39b) s, =*sh = i%h.

Measurement of the deflection of the components in a Stern-Gerlach pattern leads to
the value of the magnetic moment being associated with the spin angular momentum. It is
found to be roughly equal to the magnetic moment associated with the orbital angular
momentum (a slight difference was observed in 1947 in very precise measurements by
Lamb, and are now called the Lamb shift).
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9.7 Pauli's Theory of Electron Spin, Spin Wavefunctions and Operators

We have seen how the results of the Stern-Gerlach experiment require the electron
spin hypothesis. Other experimental evidence for its existence are the anomalous Zeeman
effect, the existence of doublets in the spectra of alkalis, and the gyromagnetic effect.

The mathematical formalism for the treatment of the vector representing electron
spin has been developed by modification of the mathematical relations for orbital angular
momentum. The Pauli theory of electron spin is of importance because of its historical
place (between Schrédinger nonrelativistic one-component wave theory and Dirac's
relativistic four-component wave theory) and the introduction it provides to the study of
Dirac's theory.

Wave functions describing electron spin may be introduced in various ways.
Assuming that our knowledge of the state of an electron includes information about the

position of the electron and about 5, , the component of the spin vector in some specified

direction, we write
(9.40) v =y(x,y,2,0;),

where 0, = %sz. We have seen that 5, is allowed to be ig—, so G, is 1. Since O,

is restricted to two values, we find it convenient to introduce the two-component

wavefunction
X,y,z
(9.41) v = Vi ) , where
y_(x,y,2)
(9.42) v+ (x,y,2) = y(x,y,z,£1).

Y_

respectively. More generally, when there is a probability distribution for G ,, we may

Y 0
The wave functions [ 0 * and are to be interpreted that G ; is definitely +1 or -1

normalize that so

©.43) (w|v) = (i |y ) +{w_|v_) = L (W+*W+ +W-*w-)dr =1

Then (\[J+ |\|J+) gives the probability that 6, = +1 and (\1!_ |\|!_) gives the
probability that 6, = —1.
Now, Hermitean operators with complete sets of orthonormal eigenfunctions are to

be assigned to spin observables. We will take these operators to be s2 and some
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component of 5, say §,. The eigenvalues of s, are the observed values ih/ 2. Hence

1 0
the eigenvalues of G, are +1 and -1. Taking the states [ 0] and [ 1 ] to be those in which

O , are certainly +1 and -1, respectively, then we have

GZ =1- =
(9.44a) \0/ 0 0 , and

GZ =—]- =
(9.44b) L) 1 -1 i

From this we can see that, in the two-component wavefunction formalism, G ; is to be

represented by a 2 X 2 matrix

,
(9.45) G, = [p ]
q S

Substituting this into (9.44) we find

e alo[y )
el U MY

Thus,
(1 0]
(9.472) 0: =g _y |
(9.47b) 02=[1 O]-l 0 =[1 0}1.
o -1]70 -1/7|o 1

To find G and Gy, we need to consider 0,3, Y as the direction cosines of a z’ axis

in relation to an Xyz coordinate system. Thus we have
(9.48) G, =00y +P0y +7Y0 ;, and, hence

2 2 2

(9.49) G,  =a oxz +|320y2 +yzoz +a[3(oxoy +oyox)

+By(oyoz +0,0, ) +70(0,65 +6,06,).
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From this and (9.47b), we readily see that

(9.502) o0,° =1,

(9.50b) Gyz =1,

(9.50¢) 6,2 =1,

(9.504d) 0xOy +0,0x =0,

(9.50¢) 0,0, +0,0y =0, and

(9.50f) 6,06, +6,0, =0.

Thus the components of G, and therefore of 5, anticommute. We also find that
(9.51a) o2 =ox2 +oy2 +022 =3, so

(9.51b) s? = %hz.

In analogy with the relation M XM = [iM satisfied by the orbital angular
momenturn operators, assume that the spin angular momentum operator § satisfies

(9.52a) SXs=1ihs,
and consequently
(9.52b) O X0 = 2i0.
Using this in a method very similar to that used to find G ;, we find that the Pauli spin
matrices are
01

(9.53a) Oy =[1 O]'

0 —-i
(9.53b) Cy = [i 0 ], and

[1 0
(9.53c¢c) o, = 0 - 1].

Since the Pauli spin matrices are Hermitean, their eigenvalues are real.
The total angular momentum J is defined in terms of the orbital angular momentum
M and the spin angular momentum s, and is given in terms of vector addition

(9.54) J=M+s=M+€lo,
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where, in the two-component Pauli formalism, the components of M are represented by the
2 X 2 matrices

(9.55a) M —[Mx O]
’ Lo M, ][
M, ©
(9.55b) M, =[ 0 My], and
(9.55¢) M, = o M,|

The addition in (9.54) then becomes simple matrix addition. It is also important to note that
spin-independent operators, such as those for the orbital angular momentum, commute
with the spin operators.

Problem 9.4: Using the Pauli spin matrices, obtain a matrix representation of G ,+.59
Yy o-Pi
a+Bi -y |

Problem 9.5: Obtain the eigenvalues and normalized eigenfunctions of G, in the Pauli

Answer: O,/ =|:

representation.60

1 1
. :+ =.L =-—1
Answer: ¢ =%1,p N2 [lj’q 2 (_1)

Problem 9.6: Using the Pauli matrices, obtain a matrix representation of
M, M_ ]

An : M-c= .
e [M+ "Mz

59|kenberry, p. 225, problem 18.5
60jkenberry, p. 226, problem 18.7
€1lkenberry, p. 226, problem 18.10
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9.8 Inner Products and Expectation Values in 2-Component Formalism

8
If we consider two two-component functions f = (?'] and g = ( + J, it is easily
- 8-

seen that the inner product, defined by
056 (fla)=(fla)+(la-)=]_(A e +1 e )ar

satisfies the requirements in (1.7). In the case that the two components of f depend on xyz
in the same way, and the two components of g depend on xyz in the same way, that is,

cy d,
(9.57) f=fl(x’y’z) c ,andg=g1(x,y,z) d |
then the inner-product becomes

* * *
(9.58) (flg) = (c+ dy +c_ d_)_[“fl gidr.

c d
Then, for spin vectors u = [ +J and v = [ + ] in spin space, we may define the inner

product (u| v) by
(9.59) (c+*d+ + c_*d_).

Two spin vectors ¥ and Vv are orthogonal if (ul v) =0, and the norm squared of a
function in spin space is (ul u).
In a state represented by a spin vector ¥, the expectation value of a spin observable
Ais
ulAlu
(9.60) (A) = {ufA]u)
(ulu)
where, on the right side, A is the matrix representation of the spin operator A.
If 1 and uy are orthonormal eigenfunctions of a Hermitean spin operator A, and
ai and aj are their respective eigenvalues, then any two-component spin function ¥ may

be represented as
(9.61) u=ciu +caus,

where
(9.61a) c]1 = (u1 |u)
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(9.61b) ¢z =(uz|u), and
©.61c) (u|u) =|c1]? +]ea|* = 2.
The probability of being in either eigenstate is

9.62a) P(a1) =|c1f?[c? . ana
(9.62b) P(az) =|ca|?[c?.

Problem 9.7: Calculate the expectation value and the probability distribution for G5 for a
state in which 6, = —1.62
: - =41 =1
Answers: (Gx ) =0,P(-1)= > ,P()= >

9.9 Eigenfunctions of Hydrogen for the Stern-Gerlach Experiment
In a Stern-Gerlach experiment with atomic hydrogen, atoms in the first or second
excited states are separated according to the values of a component of J = M + s, call it
J R . . : )
;- Rather than simultaneous eigenfunctions of H = s T M*, M,, and s, we

are interested in simultaneous eigenfunctions of H, J 2, M 2, and J,. We can easily see

that the two-component wavefunctions are not eigenfunctions of J 2 , since

2 2
(9.63) P=(M+ko) =M% +mM o+3L,

is a mixed operator.
We instead take our complete set of commuting operators to be H,J, M 2, and J,.
Calculations could be shortened by also including M - G when we look for simultaneous

eigenfunctions. Starting with M 2 and J, we must have for some A and K,

(9.642) Mz(w’fj:x(w*], and
Y- y_
v (M, +% 0 ( \l’+j "
(9.64b) J [ ] = =pn .
2\w- [ 0 M-2\vy_ v_
This gives the system of four equations
(9.65a) My, =\y,,

62|kenberry, p. 227, problem 18.11
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(9.65b) MAy_=\y_,
(9.65¢) Moy, =(pn-2)y,, and
(9.65d) Myy_=(p+2)w_.

Hence Y, and Y_ are eigenfunctions of M? for M*=X and of M, for
(l.l ) and M, (}L+—§-),respectively. Since the eigenvalues of M 2 and of
M, are 1(1+1)7'12 and mh, we must take 7\.=l(1+1)h2 and u—%=mh,

p+%=(m+l)h, l.l=(n1+l)h,forsomem,—ISmSl. Then

f+(")Ylm(9 ¢) ]
£ (nY™1(8,¢)

where f, (r) and f_(r) remain to be determined, is a simultaneous eigenfunction of M 2

(9.66) V= [

and J, for M? =1(1+1)7i2 and J, =(m+%)71.

A relation between f, () and f_(r) may be obtained by requiring that (9.66) be
an eigenfunction of M - ¢. Writing M - O = ufiy and using the solution to problem

9.6, we have

M, M_ (" _ LAY
(9.67) |:M+ "Mz:|[f_Y1mJ uh(f—ylm.

Writing this out as two equations, taking into account the fact that the components of the
matrix all commute with f, () and f_(r), and using the standard eigenvalues of the

momentum operators, we obtain
(9.68a) mhf, +c[ f- = uhf,, and

(9.68b) ' fr +(m+1)Af_ = unf_.

These are only consistentif u =] oru=—-1-1.
For the case ¥ = [, we find that the two-component wavefunction

.69 a(r )[\/?Hm (0, ¢)]

/_‘Ym+1(9 ¢)
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is a simultaneous eigenfunction of J2=j(j+l)h2, M2=l(l+l)h2, and

J=(m+L)n, where j=1+L and-1<m<l.

For the case # = —I — 1, we find that the two-component wavefunction

) VI-mY/™(6,0)
9.70) V2= gz(r’(_mm—ﬂ Y,m+‘(e,¢)]

is a simultaneous eigenfunction of J? =j(j+l)h2, M? =l(l+l)h2, and
J,=(m+3)n, where j=1-Land -1<m<l.
For the Hamiltonian H, we take the form
— 1 2
9.71) = 5+ Y (r Dr r) +V(r),

which the radial form for the Hamiltonian of the hydrogen atom. Note that H is an even

operator and, since the two two-component wave functions are eigenfunctions of

M? =1 (I+ 1)712, we see that they are also eigenfunctions of H.

9.10 The Normal Zeeman Effect in the Pauli Theory

On the basis of classical theory, we expect that the frequencies of spectral lines
correspond to frequencies of rotation of electrons in their orbits. These frequencies
though, are affected by magnetic fields. The frequency shifts of spectral lines by a
magnetic field is what is called the Zeeman effect. In the normal Zeeman effect, the
observed shifts are in full agreement with classical theory and with the Schrodinger wave
theory. However, in a far greater number of cases, an anomalous effect is observed,
which can only be accurately predicted by inclusion of the spin angular momentum or with
Dirac's relativistic wave equation.

An explanation of the anomalous Zeeman effect requires that interaction between the
spin and orbital magnetic momenta be taken into account. In this section we ignore this
interaction, but include the interaction between the spin magnetic moment and an external
magnetic field B. This may be done by adding to the Hamiltonian for a hydrogen atom in a
magnetic field a term giving the effect of the spin on the energy. We write the energies of
interaction between the magnetic field B and the orbital and spin magnetic moments |t 4

and | as
(9.72a) Uy =—Upy -B=GM-B,and
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(9.72b) Us=-ps-B=G;s-B,
where G = —e/2mygc and G5 = —e/mgc. We then have
(9.73) H=Hy+GM-B+Gys-B=H® +G;s-B,
where
1) p’
9.74) H¢ =Hy+GM-B=_—+eV +GMB.

Now, in the Pauli two-component wave theory, any spin independent operator,

such as HD | is represented by an even 2 X 2 matrix

M
9.75) HO =7 (21) .
0 H
Replacing M by B in problem 9.6, we also have
9.76 .B=lg.p=t| % B
9.76) §:b=50-b=75 B, -B,|
where By = B, + iBy,. Combining these two by (9.64) gives us
HD _ _eip B_
©.77) H= T, e |
B+ HY + m Bz

To simplify further calculations, we will consider the x axis as parallel to B. Then
By =0, By=0, B, =0, B_=0, and B, =B. In this coordinate system the

Hamiltonian is an even operator since (9.68) becomes
H(l) __¢eh B 0
_ 2mye
(9.78) H= a .
0 HW 4 ¢b_p
2mgyc
For this Hamiltonian the energy eigenvalue equation H\ = Ey separates into two

independent equations, since  is an two-component wavefunction. These two are

(9.792) (H(l) - %B)\h = Ey,., and
1) h -
(9.79b) (H + Q%O?B)q;_ =Ey_.

Rewriting these as

(9.802) HDy, = (E + an’; _ B)\|1+ and
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¢)) —|p_ _eh

(9.80b) HOy_=(E- 22 B)y_.,

we see that both \ and \_. are eigenfunctions of H (1), but for different eigenvalues.
For the hydrogen atom, the simultaneous eigenfunction of H (1), M 2, and M,,

for HD = E,.. M? =l(l+ l)hz, and M, = mh is denoted ). But since we are

working in Pauli space, this will be a two-component wavefunction, equal to

m
(9.81a) Y= W(;" , and
(9.81b) y_m 0
81 = .
R

The first is the eigenfunction of H = E,,,, — ehiB/2mygc and s, = /2, and the second is
the eigenfunction of H = E,,, + ehB/2myc and s, =—"h/2, and they are both

eigenfunctions for M2 = I(1+ 1)#2 and M, = mh.

9.11 The Anomalous Zeeman Effect

In the anomalous Zeeman effect, a magnetic field splits spectral lines into more than
the three components observed in the normal Zeeman effect. The electron spin hypothesis
that we have been dealing with was introduced just to explain this effect.
In addition to the orbital magnetic moment associated with the orbital angular momentum
M, an electron is attributed an intrinsic magnetic moment associated with its spin angular
momentum S. In the last section, we looked for a solution while ignoring the interaction
between the magnetic moments JLys and ;. However, except in the presence of a very
strong magnetic field, this coupling cannot be ignored. It is found that this coupling can be
properly accounted for by a very simple vector model relating the orbital and spin angular
moments and magnetic momenta. The model (shown below) is a rigid vector structure in
which M and s precess around J = M + s so rapidly that the only effective part of Jl is its
component along -J. Then we can write
(9.82) U=-p-B=GM-B+G,s-B=gGJ-B,
where gGJ = (L cos(p,J) is the component of [ along -J. The little g is called the

Landé g factor, and was discovered before the introduction of electron spin.
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To evaluate g with Gg = 2G, we write
(9.83) gGJ =-n-J=(GM +Gs)-J=G(M +2s)-(M +5)

=G(M* +3M -5 +2|s?),
Eliminating M - s by using JP=M?*+2M -5+ 2|S|2, we get
9.84) g=(37% - M2 +[s]?) /272
Upon introducing the eigenvalues for J 2, M? , and |s|2 , we get the standard form for g:

_ JU+D)+s(s+1)—1(1+1)
(9.85) g=1+ 25G+1)

1

For the hydrogen atom, j = i'-;—(j=% when /=0)and s = 5.



Chapter 10

Relativistic Quantum
Mechanics

This chapter looks at relativistic corrections to Schradinger’s wave equation,
and the short-comings of this approach. It then deals extensively with Dirac’s
relativistic wave equations, which involve matrices of order 4. It also looks at some
of the consequences of Dirac’s formulation of quantum theory.

10.1 The Klein-Gordon Equation

Schrédinger's discovery in 1925 of a non-relativistic wave equation led
immediately to the suggestion that a relativistic wave equation could be obtained by making
the substitutions

(10.1a) p &> ihV, (which implies
(10.1b) p? & —1*V?), and
(10.1¢) Eoin a%

into the relativistic energy-momentum relation
(10.2) (E — e®)? =(cp—eA)2 + my2c?.
This substitution gives the Klein-Gordon Equation

29 _o; 5 0D | 22
(10.3) (—h 57—21ehd>a%—1eh%—t+e ()] )\V
= (—h2c2V2 +2ihceA -V +ihce(V - A) + €A% +m()2c4)\|l.

This was developed in more detail in chapter 6, section 3.

The Klein-Gordon equation fails to account for electron spin and the formalism of
nonrelativistic quantum mechanics can not be applied since the Hamiltonian operator no
longer plays a central role. For a time the equation was ignored because of the difficulty of
interpreting solutions, but since Dirac theory has been formulated, it has been noted that it
is accurate and reasonable for particles with no spin.
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10.2 Dirac's Relativistic Wave Equation

In order to obtain a relativistic wave equation which avoids the difficulties
encountered with the Klein-Gordon equation, we might solve the relativistic energy-
momentum relation for E:

(10.4) E=c\/(p—£A)2 +myc® +V,

c

where V = ed, and then introduce the operator representations (10.1) for p and E. The
resulting equation

2
(10.5) c\/(ihV—%A) +mgc?y + Vy = By,

is of the first order in differentiation with respect to time. Thus, one of the earlier
objections to the Klein-Gordon equation has been eliminated. The square-root operator still
causes some difficulty, but progress has been made since this may be written in the form of
Schrédinger's equation by letting the Hamiltonian be

(10.6) H = cn? + myc? +V, where

(10.6a) n=p-<A

This suggests that the formalism of nonrelativistic quantum mechanics might still be used,
provided some means were discovered to interpret the square-root operator.
Dirac accomplished this in 1928 by writing

(10.7) 12 + myc? = o+ mycB,

where O and 3 are not ordinary numbers. We will investigate their nature next.

Squaring both sides of (10.7), and assuming that [3 and the components of O
commute with the components of T, but not with each other, we obtain (upon setting
A =0, = p for brevity of writing only):

2 2p2
(10.8)px2 + py2 +p,%+ moc” = alszz + a22py2 + a32p22 + mozc B
+(0y0ip + 0104 )PxPy +(ap03 + 030, )Psz + (01300 +040t3) p, Py

+moc{ (0B +Boy ) px + (0B + Bz ) py + (3B + Bos) p, }

This is an identity if
(10.9a) o =1,
(10.9b) a,-ocj + ocja,- =0,

(10.9¢) a,-B + B(Xi =0, and
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(10.9d) B2=1.

The next step is to develop Dirac's matrix representations for ¢ and B. In this
representation the Pauli spin matrices play a central role.

10.3 The Dirac Matrices

Dirac found that the relations in (10.9) can be satisfied by matrices of order 4, but
not by matrices of lower order. We start with the Pauli spin matrices and the identity
matrix [ :

01
(10.10a) Cx =|:1 O:|,
;o)
(10.10b) oy =, o}
1 O
(10.10c) O, =|:O _1:|, and
1 0
(10.10d) I = [0 J.
It can be found that 3 and the components of O depend on these, and are
0 0 0 1]
(10.11a) a1=[0 Gx]= 001 O,
s, 0| lo100
1 0 0 0]
[0 0 0 —{]
(10.11b) a2=[0 Cy]=0 0 00
oy, O 0 -i 0 O0F
i 0 0 0
0 0 1 O]
(10.11c) a3=[0 oz]: 0 0 0
s, 0|7 |1 0 0 0
0 -1 0 O]
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100 0

L 07|01 0 o

(10119 5:[3 —12]= 00 -1 0
00 0 -1

We may readily verify that the conditions of (10.9) are satisfied by these matrices. Notice
also that each of the matrices are Hermitean.

10.4 The Dirac Equations
From (10.6) and (10.7) we see that the Hamiltonian H in Dirac's relativistic wave

equation H\y = Ey is
(10.12) H=co T+myB+V.
By means of (10.11) we find that

10.13 0 o, N 0 o N 0 o, 0 o-m
. a-T= = .
(10130 - s, 0™ c, 0 e, 0% Tlon o0
Next, using the Pauli spin matrices and I, we find
10,14 0 1 N 0 -i N 1 0 (T, T_

14) o-t= - ’
(1019 1 0™ i o”" o a1 n, -m,

where T4 = Ty + iTty. Substituting this into (10.13) we obtain
[0 0 m®m,, mw_]

O O TC+ —Rz
n, 7w O 0
n, -n, O 0

(10.15) o=

In (10.12) V is to be represented by a 4 X 4 scalar matrix in which the only non-
zero elements are V's along the main diagonal. Then, substituting into (10.15) and

recalling the form of [3, we get

| %
c + mocC v 0 T, T_
(10.16) H_ 0 -+ myc , T, -7,
¢ T, T_ = — mge 0
TC+ _TCZ O % - ”lOC
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Sometimes it is more convenient to write this as a 2 X 2 matrix whose elements are
themselves 2 X 2 matrices. In this representation we would have

V
H_ (—+m0c)12 O'T
(10.17) =[\‘¢ 5o (%_moc)lz .

c
Now, because Dirac operators are 4 X 4 matrices, Dirac wavefunctions must be 4-

vectors. Thus, the wave equation becomes
L4 0

L+ myc m, n- | Vi
0 Yampee m, -, w2 | g|w2
(10.18) v =E .
T, T < —moc 0 Y3 Y3
|, -7, 0 L-myc|\va 2

This is equivalent to a system of four equations, whose simultaneous solution will provide
the four components of the wavefunction .

This could also be written using (10.17), in which case  would be a 2-vector
whose components are 2-vectors:

_(0), (V1) _(V3
a1 W_[cpj’q) [Wz]’(p [w]'

The wave equation is then written as

(10.20) (& +moc)ta § or (q’]zﬁ[q’}
on  (Lomy)p \0) “\eo

which would be equivalent to a system of two equations which could be solved

simultaneously for the two components of , ¢ and ¢.

In concluding this section, we will show that if a four-component wavefunction
satisfies Dirac's wave equation for a free particle, then each component of Y satisfies the
Klein-Gordon equation for a free particle (10.3) with A=0,¢0 =0. The elimination
necessary to prove this is most easily done by operating on both sides of Dirac's equation
in the form c(o - p + mycB)y = Ey with the operator c(o - p + mycP). Recalling
that c( 0t - p + mgcP) commutes with E, we obtain

2 2
(10.21) c“(a-p+myeB) y=cE(a- p+mycP)wv.
Substituting from (10.7) where T = p into the the left hand side of (10.21) and from our
formulation of the equation into the right give us
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(10.22) c? ( p? + my2c? )\y = E2y.

Since these are scalar matrices, this is equivalent to the four equations

(10.23) 02(p2 +m()202)\|l,- =E2\|l,-,i=1,2,3,4,

each of which is Klein-Gordon's equation.

10.5 Pauli's Theory as a Nonrelativistic Approximation to Dirac's Theory
Upon substituting

. 2
(10.242) y= e Mo My g
. —imyc?t/h ,
(10.24b) Ew=zh%=e imoc’ 1/ (E+n1062)\|l,

where W and ' are four-component wave functions, into the Dirac wave equation we
obtain

(10.25) Hy' = (E + moc® ).

Now, using (10.17) as the form of the Dirac Hamiltonian, we write this as

(LC/-+mOc)12 G-T [q)’j_ E [q)')
(10.26) =(£ +myc) o)

o T (%—moc)lz ¢’
This is equivalent to
(10.272) (=E)¢'+6-m¢’ =0, and
(10.27b) o1y +(Y=E - 2mc)e’ =0.
Assuming now that 2rr1002 > FE -V, we get
(10.28a) 6w’ = (E—;V)q) and
(10.28b) G - o’ =2myce’

as the nonrelativistic approximation to (10.27). Eliminating ¢’ from this, we find that ¢’
must satisfy

1 . 2.7 r _ ’
(10.29) T (0107 + Vo' = EY,

in the nonrelativistic limit. Substituting in an alternate form for (© - 1t)2 we get

(10.30) (Tlm;nz +V+Gss-B)¢'=E¢'.
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The Hamiltonian now contains a spin dependent part, in addition to the spin independent
part, in full agreement with the Pauli theory. Hence, in the nonrelativistic limit, the Dirac
four-component wave theory reduces to the Pauli two-component wave theory.
Unfortunately the spin-orbit interaction is lost in the process of taking the nonrelativistic
limit.

10.6 Plane Wave Solutions for a Free Dirac Particle
For the Dirac equation for a free particle,

(10.31) Hy =ih %, where
(10.31b) H = co.- p+myc?P,

we try to get solutions of the form

(10.32) v(r.0)=f()w(r),

where W is a four-component time independent wave function. Separation of the time
variable leads to

(10.33a) Hy(r)=Ey(r) and
(10.33b) in L = gy (1),

where E is a separation constant. Solving this, we find that from any four-component
energy eigenfunction W and energy eigenvalue E, we can form a stationary state wave
function
(10.34) y(r,t)=eEhy(r).

We proceed to determine the simultaneous eigenfunctions of p and H, which are
readily verified to be commuting operators. Starting with p, we find that the eigenvalue

equation

(10.35) pV = hky,
where p = —ihV, has solutions

(10.36) y =Bk,

Where B is a four-component function with constant components.
Substituting this into (10.18), in which we let V =0 and 7t = —ihV, we find that
the energy eigenvalue equation becomes
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(mpc 0 p,  p.|(B By
0 c - E
(10.37) mo¢ P+ P | By|_E| By
Pz P- —myC 0 By c| B3
| p+ P 0 -—mgc |\ By B,
where now p = hk represents the observable p, rather than the differential operator
p=-—ihV.

The system of four linear, homogeneous equations has a solution other than B = 0
if and only if p and E are related so that the determinant of E is 0. To avoid the labor of
expanding the determinant, recall that any solution of the Dirac equation for a free particle
satisfies the Klein-Gordon equation for a free particle. Substituting any component

(10.38) wj(r,t)=ei(p"‘E‘)/h B;,j=1,2,3,4,

into the Klein-Gordon equation (10.3) where A =0 and ¢ = 0, we find that

(10.39) E? =c2p? + mg2ct.

Thus E and p must satisfy the relativistic energy-momentum relation, which is to be
expected.

In observing that, in order to obtain a complete set of eigenfunctions, the negative
as well as the positive roots of the right-hand side of (10.39) must be included as energy
eigenvalues, Dirac was led to predict the existence of particles called positrons. This
theory will be discussed in the next section, but we will continue now to complete the
calculations for both the positive and the negative energy solutions.

From (10.39) we must have £ =1¢, where € = C2p2 + m()2C4 . For the

positive energy solutions, we write £ = +€ in (10.37) and obtain the equations

(10.40a) (m()c - %)Bl +PzB3 +p_By =0,
(10.40b) (moc—£)B, +piB3  —p;By =0,
(10.40c) p,B; +p_B —(moc + %)33 =0,
(10.40d) p. By -p;B -—(moc + %)34 =0.

For e as given, it may be verified that every third-order determinant formed from
the coefficients in (10.40) vanishes. That is, the matrix of the coefficients is of rank two,
and hence any two of the B's may be expressed in terms of the other two. For example,

we could choose to solve a,b for By and B,. Or, we could solve c¢,d for By and By.
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The first choice involves a division by a smaller number than the second choice, so By and
B, are called the large components, while B3 and By are called the small components. It
is customary to solve for the small components B3 and By in terms of the large

components. Doing this for the positive energy solutions we get

(10.41a) B; = p:By +p;B2 , and
moc + ¢
(10.41b) By = P+By —pzeBZ.
moc + 2

10.7 Dirac's Theory of the Positron

In classical relativistic mechanics, negative energy values E =—¢€ are not
considered, since transitions between positive and negative energy values may not occur.
However, in quantum theory such discontinuous transitions may take place, and further,
negative energy eigenfunctions are needed to obtain complete sets of energy
eigenfunctions. Hence, it is not possible to ignore negative energy states.

By a calculation known as charge conjugation, Dirac showed that the negative
energy solutions refer to the motion of a particle having the mass of an electron and the
opposite charge. Such particles have been observed experimentally and are called
positrons. However, as Dirac points out, the negative energy solutions do not represent
positrons, since this interpretation would lead to ludicrous conclusions, such as negative

kinetic energy and a relativistic energy E decreasing as p2 increases. Itis equally incorrect
to interpret the negative energy solutions as representing particles of negative mass.

In order to obtain an interpretation of the negative energy solutions in agreement
with experimental evidence, Dirac introduced two basic assumptions regarding these
solutions: (1) Nearly all negative energy states are occupied by electrons, (2) A electron
in a negative energy state is not observable, but unoccupied negative energy states are
observed as positrons.

According to Dirac's first assumption, negative energy solutions represent electrons
in unobservable states. Consider an electron in a negative energy state

E=-¢g< —-mocz. Raising it to a positive energy state, E' = +€ 2 +mocz, requires

energy E'— E2>2 c%. The previously unobservable electron becomes observable as a
mgy

positive energy electron, and the unoccupied hole which it vacates is observable as a
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positron. This is a brief synopsis of Dirac’s Hole Theory, which accounts for observed
pair production.
10.8 Inner Products and Expectation Values

In order to give full physical content to Dirac's relativistic wave equation, we need
to define inner products and expectation values in terms of four-component wave functions
and Dirac operators (4 X4 matrices). Then the formalism of the Schrédinger
nonrelativistic wave mechanics may be carried over completely. In particular, we can say
that observables associated with time independent operators which commute with the Dirac
Hamiltonian will be quantum mechanical constants of the motion.

If we let f and g be two four-component wave functions such that each of the
components of f and each of the components of g are square-integrable, then the inner
product is defined by

(10.42) (flg)= _L(fl*g1 +f2'e2 + f3'es + f4'ga )dr.

and the norm squared of f is given by ( f| f). Further, a constant ¢ may be found as
before such that the norm of f’=cf is one, in which case f* is normalized. If
(f|g)=0.fand g are orthogonal.

The expectation value {A) of an observable A is defined for a represented by a
four-component wave function  as

(10.43) (A)= %,

where on the right-hand side, A is the 4 X 4 matrix representation of the operator A
associated with observable A.

10.9 Spin Angular Momentum and Magnetic Moment

One of the most remarkable successes of Dirac's theory is the natural way in which
spin angular momentum and spin magnetic moment are correctly predicted by the Dirac
equation.

For a particle in a central field V (7), we have seen that the Dirac Hamiltonian is
(10.44) H =ca.- p +myc?B +V(r).
It might be expected, as in the Schrédinger theory, that H and M commute. In determining
if this is the case, it is only necessary to work with one component of M, say M,. Since

M 2 commutes with the second two terms of (10.44), we need only examine
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(1045)  [M,,H]=coy[M,, pe]+ cop[ My, py |+ cas[ M, p, ]

Using the commutation relations between M, and the components of p, we may write

(10.46) [M,, H]=inc(a1p, — ozpy ).

From this we see that

(10.47) [M,H]=ihca X p.

Hence M does not commute with H, and is not a constant of the motion, as it was in the
Schrodinger theory.

We still expect there exists some vector, similar to M, which commutes with H.
Working with angular momentum still, we try G. Again, for convenience sake, we work
with one component, say G3.Working with this we will find that
(10.48) [0,H]=-2ica X p.

So O also does not commute with H.

Not getting frustrated though, we notice that the two commutators above have a
similar form, and their addition will give us an operator that will commute with the
Hamiltonian, namely,

(10.49) J=M+1lo.

Since M represents orbital angular momentum, it is quite natural to interpret § = %0‘ as the

spin angular momentum and J = M + s as the total angular momentum.
To show that

(10.50) ua’ﬁsz%c

represents the intrinsic magnetic moment of an electron, Dirac squared the Hamiltonian for
a particle in a magnetic field B =V X A. From (10.6) and (10.7) we find that
(10.51)
2 2
HY* _ — 2 2.2
(£)" = (0 1+ moeB)” = (o 1) + moe{B(or ) + (o - m)B} + mg2e?.
By using (10.9), this can be reduced to

2
(10.52) (£ = (o0 )% + my2c?.

However, we also know that
(10.53) (a-m)=n?-26.B, 5

2

2
(10.54) (%+moc) =n* - BeG. B + my2c?,
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where H = H; + mocz. Assuming that Hj << m()c2 , we obtain
2
(10.55) Hy =2k 5.B

Since the energy of a dipole of magnetic moment m in a magnetic field B is -|B, it is
natural to attribute an electron an intrinsic magnetic moment (10.50). This agrees with
experimental evidence, and with the Uhlenbeck-Goudsmit hypothesis. In the Dirac theory,
no extraneous hypothesis is needed for the introduction of electron spin.

10.10 Angular Momentum Eigenvalues and Eigenfunctions
In preparation for solving the problem of an electron in a radially symmetric
electrostatic field, one of the most important early results of the Dirac theory, we want to

obtain simultaneous eigenfunctions of 2 and J,. These two operators commute, and it

can also be shown that any eigenfunction of K =BG - M + Aif3 is also an eigenfunction

2
of'z , since 12 =K2 —ﬁ4—.

From J, =M, + -;fO' , we find that a four-component wave function Y is an

eigenfunction of J, for J, = L7 only if

(10.562) Myy13 =1 -1)hy3, and
(10.56b) Mz =(n+3)nyo .

Now, if we also let Y be an eigenfunction of K for K = kh, then we can show that
(10.57) My = (k2 - kB)h"w,

since M2 = K2 — KBK. Using the 4 X 4 matrix representation of 3, in (10.11), we see
that

'M20 0 0 [(w 2-k 0 0 0 |(w
2 2 _
10s| O M 020 V2 |_,2| O & k20 0 | w2
0 0M20 || w3 0 0 K+k 0 ||vs3
0 0 0M%|\vy 0 0 0 K +k|\va
From this we find that
(10.59a) M2y 5 = k(k—1)h%yy 5, and

(10.59b) M2y3 4 = k(k +1)1Py3 4,
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if K = kh. Hence, Y12 must be an eigenfunction of M 2= k(k - l)h2 and 3 4 an
eigenfunction of M2 = k(k +1)h2.
The simultaneous eigenfunctions of M 2 and M, are the surface spherical

harmonics ¥/ (©,¢), multiplied by arbitrary functions of the radial coordinate 7. For

Y/" we have M2 =1(l+1)#? and M, =mh. Writing k(k—1)=1(l+1) we
obviously have either k =—1I or k =1+ 1. Writing k(k +1)=1(l + 1) we obviously
have either Kk = or k = —[ —1. Thus we obtain all possible solutions of (10.56) and

(10.59)bytakingu=m+%andk=—lork=1.

Taking L =m +% and k =—I we find, by using our knowledge of surface

spherical harmonics, that (10.56) and (10.59) are satisfied by
( \

vy [ AEE(6.0)

ryym+le,
(10.60) yo=| V2= 12 )’m (8.0)|
¥3 | | AL (6.0)

Y4/ | fa(nymile,o))

Next, from substituting into a system of equations derived from the Dirac representation of
K, that we may set the functions f to

(10.61a) A(r)=AT-mf(r),

(10.61b) fo(r)==T+m+1f(r),
(10.61c) f(r)=+mF(r),and
(10.61d) fa(r)=I-m-1F(r),

where f and F are arbitrary still. Now, putting it all together, we get
4 \
" T=m £ (r)Y™(8,0)
28 —w/1+m+1f(r)Ylm+1(6,¢)
(10.62) Y= = m ,
V3 VI+mF(r)Y/™ 1(6,9)

Vol NI=m=TF(n¥"11(0.0) |

is a simultaneous eigenfunction of J, = (m + %)h and K =-1Ih.
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In a similar manner, taking L = m +% and k =/, it can be found that

( \
V1 Vi+meg(r)Y"(6,9)
l-m-—-1 Ym+1 e’
(10.63) y=| V2| V" g(r)y"72(6,9)

V3 \/l-—mG(r)YI”il(G,(b)
V4 \1/l+m+1 G(r)Yl”i’i'l(O,(b))

where g and G are arbitrary functions of 7, is a simultaneous eigenfunction of K = /A and

Jy=(m+3)n.
From these we can see that the four-component wave functions \f; and y_; are

simultaneous eigenfunctions of J, = m+1)n and J?=j(j+1)A% where
z ) JUJ

=11
j=l-3.

The functions f, F, g, and G remain to be determined by the requirement that the

2
/'s are eigenfunctions of the Dirac Hamiltonian. The solution for V (r) = =&, giving

the energy eigenvalues and four-component wave functions for the hydrogen atom, is done
in the next section.

10.11 Solution for the Hydrogen Atom

Because there is a spherical symmetry to the hydrogen atom, the eigenfunctions and
eigenvalues of the Dirac Hamiltonian are most readily found by using a spherical coordinate
system. The first thing to do is express the terms in our equations in spherical coordinates.
Doing so we find that

(10.64) a-p=rl2{(a-r)(r-p)+i(a-r)(o-M)}.

By substituting this into (10.44) and using the fact that - M = K — A, we obtain a

representation of the Dirac Hamiltonian in spherical coordinates
(10.65) H=r%(a-r){(r-p)+iBK—ih}+m0c2[3+V(r).

The next major step is to obtain a 2 X 2 nested matrix representation of H. By
replacing Tt in (10.15) by r we find first that

10.66 o-r= 0 re
(10.66) “\rt 0/
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where
X—iy T
(10.67) e=| 1 7 |<[ cos®  esind
Xty -z é®sin@ —cos®

r r

Through substitution of the other identities that we know, we find that for an eigenfunction

of K = kh that
¢ | E(r-p+i(k-1)n) (—-moc+%)l2

By writing the energy eigenvalue equation as a system of two equations depending on the
two-component wavefunctions ¢ and @, and performing some elementary matrix algebra,

along with the substitutions ¢ = L:- and @ = l'tTv, we obtain

(10.692) (o + L )u+(v+L2)=0,aa

(10.69b) (u’ — k_ru) + (a2 - %)v = (0, where
2_ 2

(10.69¢) a = —”"’%ﬁ and @) = ”";;;’—E

The solution to this set of equations is more easily found by using its approximate

solution for large values of r. If V(r) — 0 as r — oo, as is the case of the Coulomb

2
potential V (r) = —f—, the system of equations can be approximated for large 7 by

(10.70) au+v' =0and ' +apv=0.
Now, the bounded solutions to this system is proportional to e?”, where a is such that

2
a? = ayap = myc? - f—z Thus we will make the substitutions u =e? P(r) and

v =e%Q(r), and also make a change of variable to s = ar. Then (10.69) becomes

a ) K\ —
(10.71a) (a‘ —%)P+(as —1+?)Q—O, and
0 k a _
(10.71b) (as —1—;)P+(—}+%)Q_O,

2
where O = %—C is the fine structure constant.

Considering P and Q to be able to be written as an infinite series, we let
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(10.72) P=Y pjsit™* amaQ="y g;s/*.
j=0 J:O
Substituting these into our system of equations, collecting like powers of §, and dividing

A

by §™ we end up with a system of equations which can be satisfied only if the coefficients

of 5§ vanish separately. Equating the coefficients of S_l to zero, we find that we must have
(10.73a) apo—(A+k)gy=0,and
(10.73b) (A—k)po +aqg=0.

2 To obtain a solution that is

finite at 7 = 0, we take A = +VkZ — 2. Building a recurrence relation by a similar

method, eg: equating the coefficients of Sj -1 to zero, we get
1074  ((j+A-k)a-oaa)pj+((j+A+k)ay +aa)q;=0.

These two equations are consistent only if 2=k -q

From this recurrence relation we can show that the solutions being obtained are square

integrable only if the series (10.72) terminate, which they will do with the term sN +7L.

- aa = 2 _E* .
=aqiay = myec v again, to get

(10.75) 2(N+A-k)a=a(ay — a).

then we let j=N, and we use a?

This will determine the energy eigenvalues. Using A = +v k2 - a2 we obtain

2
10.76 E=mac?. 1+ —“—j .
(10-76) ”’Oc\j (mkz—_o?

When we subtract the rest energy m()c2 and replace N by a symbol §, we observe that the

resulting expression is identical with (5.42) which was derived using the Wilson-
Sommerfeld quantization. Hence, Sommerfeld's formula is a consequence of Dirac's
relativistic wave equation.

10.12 Physical and Statistical Interpretation of Dirac Wave Functions
A natural extension of Schrodinger's physical interpretation of the nonrelativistic
wave function, section 6.5, to the Dirac four-component wave function is to assume that

* * * * *
1077 p=ey*y =e(yi'vi + v2'v2 + v3y3 + yatyy)
represents the density of the charge in a cloud picture of the electron. In a statistical

. . * vqe .
interpretation we assume that J = "\ represents the probability density. These

assumptions are valid only if a conservation equation is satisfied.
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If \ satisfies the Dirac equation
(10.78) ihﬂ——ihV(ca ) - Lo Ay + myc?B
. ot - W c W mgC \I"’

then the conjugate wavefunction satisfies the conjugate equation

(10.79) —ih

*
a;’t = ihV(\p*ca) £yt A+ mocty*B.

In interpreting these, we remind ourselves that each term in the former is a column vector,
while each term in the later is a row vector, and the operators are Hermitean matrices.

Multiply (10.78) from the left with \|I*, and (10.79) from the right with \/, subtract the
two, and divide by ii. The resulting equation is

(10.80) $(v'v)=-Y(y cay),

and it is seen that J = \|I*\|I may be interpreted as a probability density, provided
(10.81) S = y*cay

is interpreted as the probability current. In the cloud picture of the electron, p = e/ and
Jj =eS, as in section 6.5.

By considering the motion of a free electron in the Heisenberg picture, Dirac was
led to a very surprising and interesting result. First, he observed that the momentum p
commutes with the Hamiltonian, and is thus a constant of the motion. Next he found that
the operator for the velocity is
(10.82) F=ca.

Dirac concluded that, since £1 are the only eigenvalues of the components of O, “a
measure of a component of the velocity of a free electron is certain to lead to the
result X c.” Dirac explained this surprising result in terms of the uncertainty principle and
a "trembling motion" in which the average velocity, which is observed, is less than ¢, but
the instantaneous velocity is always +c.

Although it may be paradoxical on first thought, on reflection it is natural that
Dirac's theory, which contributes so much to our concept of the electron, leaves us
wondering just what an electron really is. Advanced quantum electrodynamics is beset
with difficulties much more serious that interpreting this trembling motion. Dirac suggests
that "the difficulties, being of a profound character, can be removed only by some drastic
changes in the foundations of the theory, probably a change as drastic as the passage from
Bohr's orbit theory to the present quantum mechanics.” This change may be contingent on
discoveries in mathematics, as drastic as the step made by Newton and Leibnitz in
discovering the calculus.



-~ Appendix I

Approximation
Techniques

This chapter looks at some of the approximation techniques more frequently
used in quantum mechanics. The first to be looked at is the Wentzel-Kramers-
Brillouin method, or WKB Method for short. This is a scheme for determining
approximate energy eigenvalues. Then we look at perturbation theory, a general
method for establishing approximate wavefunctions and energies for potentials that
can be expressed as slight departures from potentials for which the Schrédinger
equations can be solved exactly.

A.1 The WKB Approximation

The Wentzel-Kramers-Brillouin method, or WKB Method, arises from barrier
penetration problems. These are the non-zero probability of finding a particle outside its
classical turning points due to the exponential-decay characterizing solutions of the

Schrodinger equation when E < V(). If the penetration of the wave into the potential

barrier is slight, one can say that \|I(x) approximately goes to zero where £ =V (x)
This situation is similar to that of a vibrating string clamped at both ends. The fact

that the ends of the string cannot oscillate restricts the string to oscillating in modes where

integral numbers of half-wavelengths fill the intervening space between the ends. The

essence of the WKB approximation is that if \|I(x) is characterized by a wavelength A,
then the particle energy E must be such that approximately an integral number of half-
wavelengths fit between the turning points of the motion. This approximation arises from
ignoring the presumably negligent barrier penetration.

To derive the WKB approximation, recall that Schrodinger's wave equation is
(A.1a) Hy(x) = Ey(x),

or, in the momentum representation,

2
(A.1b) [ﬁ— + V(x)]\p = Ey.

2m
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This gives us the momentum representation of the energy,

2

(A2) Z=+V(x)=E.
Rearranging this to solve for p, we get
(A.3) p= -JZm(E -V (x)).

From de Broglie's work (see section 2.4), we know that

(A.3) p= {-

and, given that a standing wave with an integral number of half-wavelengths will
approximate our solution and give us an energy that is constant in time, we get

(A.4) L~ 2m(E-V(x)).
Integrating this with respect to x gives us

(A.5) nh = 2J JZm(E —-V(x))dx= 1/8m_| JE -V (x)dx,

which is the WKB approximation. Remember when using this that the turning points
occur where the kinetic energy is zero, hence the momentum is zero, and
E =V (x = turning points).

As an example of how to use the WKB method, consider a free particle in an
infinite well of width L, where the potential function is given by

o x<0
(A.6) V(x)=40 0<x<L
oo L<x

Using the WKB approximation, we know that

(A7) nh = JSmJ_Z JE -V (x)dx,

which for our problem simplifies to

L
(A.8) nh = -JSmJO -J—E_dx.
Integration of this gives us
(A9) nh = 8mE L,
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or, rewriting
_ n2n?
8mlL?
As you may recall, this is the exact solution, not approximate. This means that our
assumption, that there is no penetration of the barrier, is true in this case. Keep in mind

that this is not necessarily true, and in most cases it won't be. It does however validate the
method.

(A.10) E,

Problem A.1: Consider a potential function given by

v e x<0
(x)—-— ax 0<x<oo

Find E using the WKB approximation, if V(x) < E for 0< x < a. In other words,
x = 0 and x = g are the turning points of the motion.?

3nha ]2/3

Answer: E =|:
MR T am

Problem A2: Consider a potential function given by

o x<0

0 O<x<a
V(x)={Vo a<x<b

vy b<x<c

[0 c<x

Find E using the WKB approximation, if V(j < E < oo for 0 < x < ¢.2

2,2 2 2
Answer: E, = ’8‘ ’::2 —%(42 _%_%)
m

YFisher, Notes, WKB Homework, problem 1

2Fisher, Notes, WKB Homework, problem 2



Approximation Techniques iv

Problem A.3: Find the energy of a hydrogen atom using spherical coordinates. Hint:

=1 e - -1 &3
V(x)_4neorandE_4neo a’

4

Answer: £, = %
8n“h”e,
A.2 Time-Independent Perturbation Theory

The WKB approximation only works with one dimensional systems. To solve
problems in more than one dimension, perturbation theory is needed. Perturbation theory
is applicable when the system being looked at is similar to a system with a closed form
solution, and the the closed form solution is of the form desired for the system in question.
Some of the important applications of perturbation theory include the solutions to the
photoelectric effect, the Compton effect, pair production and annihilation, the hydrogen
atom in an electric field (the Stark effect), the helium atom, the hydrogen molecule, many
particle systems, problems in scattering and diffraction, and many more.

To derive the equations of perturbation theory, consider a system in which the
energy E is constant in time. We then make the assumption that the Schrédinger time

independent wave equation (6.9) is exactly solvable for a Hamiltonian H O, where H 0
does not differ greatly from the Hamiltonian H for a similar problem. Thus we can say that

(A.11) H%,° =E,%,°,
and
(A.12) H = H0 +XH(1),

where A is the perturbation parameter, and is introduced to aid in distinguishing orders of
magnitude. Making this substitution in the STIWE gives us

(A.13) Hy = [HO Yy J\y = Ey.

Note that when A =0, (A.3) is satisfied by any eigenfunction W,,O of H 0 for

E=F ,,0. Thus, it is reasonable to expect that when A # 0, (A.3) is satisfied by a

3Fisher, Notes, WKB Homework, problem 3
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solution , belonging to an eigenvalue E = E, which does not differ greatly from
E, 0 we may therefore write

0 1 2 2
(A.14a) v, =y, +ay, 0 2%y, 4

(A.14b) E, =E,° +2E,0 +22E,D 4.
Substituting (A.14) into (A.13), and equating coefficients of corresponding powers
of A, we obtain, up to the coefficients of 7\.2:

(A.152) H% 0 =E,%°
(A.15b) HO%, (Y +H(l)\|’n0 =E %,V +E,Dy,°
Aa150H %, @ +HOy, 0 — g Oy @ L g Oy O L g Dy O

Note that the zero order approximation (A.15a) is the equation for the unperturbed system.
The first order approximation (A.15b) can be found by first rearranging so that like terms
of \ are together:

(A.16) (HO —E,,O)\y,,(l) = —[H“) ~E,O ]\yno,

and then forming the inner product of each term with 0:

(A.17) (\yno \,,n(l)) _ _(WO ‘lln0>-

When this is solved, the left hand side of the equation goes to zero because of the

H°-E,° HY _g,O

Hermiticity of H 0 and the fact that E ,,0 is a real number. Likewise, E n(l) is also a real

number, and hence (A.17) becomes:

(A.18) 0= _<\pn0 y \,,n‘)) +E,0,
or, with some rearranging,
(A.19) En(l) = Hnn(l) = (‘Vno IH(I) ‘Vno)'

This is the first order approximation of /,, belonging to an eigenvalue E = E ;.
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From (A.15c), and following the above technique, it is easy to show that
1 1 0 1
‘l’n”)“En()(Wn \Vn())-

This form lacks some general utility though, because \|I,,(1) is not always known.

(A.20) E,? = (\yno IH(I)

Another form of the second order approximation may be derived by first making the
assumption (valid, but not proven here) that

(A21a) v =Za,-\yj0,
J
where
Hy,
(A.21b) a; =—25
T B -E°

Now, we know from (A.15c), and the Hermiticity of H 0 that

(A.22) H(I)Wn(l) = En(l)‘lln(l) +En(2)‘l’n0-
With appropriate substitutions from (A.19) and (A.21), we get

(A23) [H(l) —(wnOIH(D ) )]Zajwo =E,Dy,°.
j

0
Forming the inner product with Yn gives:

(A24) (q;,,o H(I)Zaj|\yj(l)>=En(2),
J
or
.0y
A25) £, =3 2 in

0 0
wn Ek —Ej
This is sometimes an easier way to obtain the second order perturbation because it does not
need a wavefunction in order to be evaluated.
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A.3 The Stark Effect for the Plane Rotator

As an example of the use of perturbation theory, consider a rigid rotator of moment
of inertia I and electric moment L. If this object is constrained to rotate about an axis
perpendicular to a uniform electric field F, its potential energy is U = —LF cos 0 where
O is the angle between the polar axis axis and the direction of F. We know that the
Hamiltonian for a rigid rotator with moment of inertia / is

2
(A.26) HO = L,
and the energy is
0 2,2
(A.27) E, = ﬂi?‘
When the STIWE is solved with these values, we get
0 1 +ino
A.28 =—c¢
( ) Yin on

Note that there is a double degeneracy in the absence of the electric field (except in the
ground state); this corresponds to the two possible directions of rotation.
Now, applying perturbation theory to take into consideration the electric field, set

(A.29) H (1) =—WFcos 6.
Using this and the first order approximation (A.19), we readily get
1

(A.30) Ei /Y = (yi |- nFcos 6| y;).
Solving the inner product, we obtain
(A.31a) E Y = (0 S 2BE [2F -ik0 oo iR g
Note that

E k=1
(A.31b) H O =72 JTEF

0 J#kx1l

We are interested in E n(l) =E, n(l) , though, which clearly is 0. Hence,

(A32) E,=E +E,Y =E,°.
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Thus the first order approximation makes no changes to the energy, and we must look at
the second order approximation. Plugging (A.31b) into (A.25) gives us

2 2
(A.33) E,® - (_21 uF) (TI”F )

+
0 0 0 0
Ey” —Ep1 Ex —Eg1 |

which, with (A.27) becomes:
1,2p2
4!'1 F

o3[} o=l
(A.34) E, oy 2 T momtizel’

or, simplifying,
PRGN ik
n - .
(4.35) n2(4n? -1)

Hence the second order approximation is required to account for the observed displacement
of the energy levels.
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