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INTRODUCTION

An analysis of variance (ANOVA) is called "one-way" when
one nominal 1level variable is used to differentiate the
populations of interest. This nominal variable is called an
independent variable while the variable for which means are to be
compared is called a dependent variable. As an example, say we
have three brands of wire and we want to know if they all have
the same mean breaking strength (in pounds). The brand of wire is
the independent variable and the breaking strength is the
dependent variable.

The null hypothesis in a one-way ANOVA states that the
means for the k populations being compared are equal, while the
alternative hypothesis states that there 1is at 1least one
difference among the k population means. The data is generated by
selecting a random sample of items from each population, and can

be represented by

Xll X12 oo Xlnl
X21 X22 PP X2n2
xkl Xk2 .« ank

where the first subscript indicates from which population an item
is taken and the second subscript distinguishes between different

items within the same sample.



The means and variances for the k populations are

represented respectively by ui, M3, ..., Hx and oi, 05, ey oﬁ.
Sample means are denoted X, X3, ..., Xk, and the mean of all
nx=nq+np+...+ny items taken together is denoted Xi. The

hypotheses can be written as

Ho: Mq=Uz=...=ug

vs

Hy: There is at least one difference among the puj's
Returning to the wire example, suppose we have a random sample
for each of three brands of wire resulting in the following data.

BRAND «

165 162 159 162

BRAND S

156 163 158

BRAND I’

151 154 160
We have k=3 samples, the respective sample sizes are nj=4, n,=3,
n3=3, and the total sample size is n4=10. The respective sample
means are Xj3=162, X»=159, and X3=155. The mean of all the n;
items taken together is X,=159.

The test statistic in a one-way ANOVA is the ratio of two
mean squares, one measuring variation between samples and the
other measuring variation within samples. The between samples
mean square, denoted MSB, is the between samples sum of squares,
denoted SSB, divided by its degrees of freedom (k-1), that is,

MSB = SSB/(k-1) = Enj (X{-%x)2/(k-1)



Similarly, the within samples mean square sum, denoted MSE, is
the within samples sum of squares, denoted SSE, divided by its
degrees of freedom (n*-k), that is,

MSE = SSE/(n*-k) = (xij-=i)2/(n*-k)
In the wire example,

SSB=(4) (162-159)2+(3) (159-159)2+(3) (155-159) 2=84 ,

MSB=84/(3-1)=42 ,

SSE=(165-162)2+(162-162)2+(159-162)2+(162-162) 2+

(156-159)2+(163-159) 2+ (158-159) 2+
(151-155) 2+ (154-155) 2+ (160-155) 2=86 ,

MSE=86/(10-3)=12.286
The test statistic is equal to 42/12.286 = 3.42 . As it turns
out, the f test with a significance level of 0.05, f(2,7,0.05),
yields a value of 4.74, and with a significance level of 0.10,
£(2,7,0.10), yields a value of 3.26. Thus the null hypothesis
would be rejected under the significance 1level of 0.05 and
accepted under the significance level 0.10

The hypothesis test in the one-way ANOVA is based on the

fact that the test statistic f(k-1,n*-k) = MSB/MSE has the
Fisher's f distribution with (k-1) numerator degrees of freedom
and (n*-k) denominator degrees of freedom when the following

conditions are satisfied:



(1) Observations are selected independently of one
another.
(2) The k populations all have the same variance, i.e.
03=03=. ..=0} .
(3) The k populations all have normal distributions.
(4) The k populations all have the same mean, i.e.
B1=K2=.. .=}k -
Note that condition (4) is the null hypothesis. The null
hypothesis is rejected when the test statistic f(k-1,nx-k) is
sufficiently large. After choosing a significance 1level the f£
statistic
SSB/ (k-1) MSB

f(k-1,nx-k) = -
SSE/ (nx-k)  MSE

can be compared to an appropriate tabled f value in order to
determine whether or not the null hypothesis should be rejected.
Empirical study [1l] seems to indicate that the hypothesis
test 1is relatively robust against a variety of departures from
the normality condition (3), meaning that the f test "works"
reasonably well with many non-normal distributions. However,
virtually nothing is known about why this should be the case.
This study is probing into the reason(s) why the f test
should work relatively well with many non-nérmal distributions.
One possible explanation could be that non-normal data tend to
behave like normally distributed data when put through a suitable
orthogonal transformation. The f statistic can be written in an

algebraic form were the data are orthogonally transformed. This



study utilizes a specific orthogonal transformation of the data
based on Helmert matrices [2] to be defined later. It is our
contention that the distribution of the orthogonally transformed

data will tend to have the appearance of normality.

ONE-WAY ANOVA IN TERMS OF MATRICES

Let X be the nixl1l matrix defined by

XT=[x11,x12,...,xlnl,x21,x22,...,x2n2,...,xkl,xkz,...,xknk].
For i=1,2,...,k, let 1; be the njxn; matrix with every entry
equal to one (1); let M be the nixniy partitioned matrix with
(1/nq)1,, (1/n3)1,, ceey, (1/ny) 1k on the diagonal and

appropriately dimensioned zero matrices off the diagonal; let 1

be the nixnix matrix with every entry equal to one (1); let I be
the nixni; identity matrix. If B and E are the nixns matrices
defined by

B=M-=- (1/ng)ly and E=1I - M,
then it follows that

SSB = XTBX and SSE = XTEX .
Now, B and E are each symmetric and idempotent, hence each of
their eigenvalues are equal to either 0 or 1. The matrix B has
rank (k-1), and consequently, there is a (k-1)-dimensional
eigenspace corresponding to the eigenvalue 1. The matrix E has
rank (nx-k), so there 1is a (nx-k)-dimensional eigenspace
corresponding to the eigenvalue 1. Since, BE = 0, these two

eigenspaces will be orthogonal.



Helmert matrices [2] can be used to define an naixna
orthogonal matrix which will simultaneously diagonalize B and E.

Let us denote an mxm Helmert matrix by Hy, that is,

- .
1//(2-1) -1//(2-1) 0 0o .. 0 0
1//(3+2) 1//(3-2) -2//(3+2) 0o .. 0o . 0

w = : .

n 1//([i+1]+1) ... (i times) ... -i//([i+1]i)..0 ... 0
1//(m+[m-1]) ce (ﬁ—l times) ... : -(m-1)//(m+[m-11])
1//(m) ces . . ee. 1//(m)

Next, we let H be the nixni partitioned matrix with Hnl , an ,

, an on the diagonal and appropriately dimensional zero
matrices off the diagonal. Note that H is an orthogonal matrix.
Rows nj;, nj+ny;, n3+np,+ns, ..., niy of the matrix H each represent
eigenvectors of E corresponding to the eigenvalue 0. Hence, the
remaining (ng=k) rows form a basis for the eigenspace
corresponding to the eigenvalue 1 of the matrix E. An orthogonal
basis for the eigenspace corresponding to the eigenvalue 1 of the
matrix B can be found by selecting (k-1) appropriate 1linear
combinations of rows n,, nj;+n;, nj+ns+n3, ..., ny . Let C be an
nxXnix matrix with the property that when H is pre-multiplied by
C, rows n;, nj+ny, nq+np+nz, ..., hx of H are replaced by Kk
orthogonal rows (k-1) of which form an orthogonal basis for the

6



(k-1)-dimensional eigenspace. Let us furthermore require that C
leave the remaining (ni-k) roﬁs of H fixed. The matrix P = CH is
orthogonal and diagonalizes both B and E, i.e.

B = PTD;P and E = PTD,P
Given that X satisfies condition (1), it can be shown [3] that
the following are equivalent:

X satisfies condition (3).

The transformed vector Z=HX satisfies condition (1).

The transformed vector Z=HX satisfies condition (3).
When X does not satisfy (3), 2=HX will not satisfy either
condition (1) or (3). It is conceivable however that 2Z=HX might
tend to behave more as if it satisfies conditions (1) and (3)
than does X. If this were the case, then

SSB/ (k-1) zTcTp,cz/ (k-1)

f(k-1,nx-k) = =
SSE/ (nx-k)  2TcTD,CZ/ (ni-k)

might tend to behave more as if it followed the Fisher's f
distribution than one would expect knowing only the distribution
of X. Hence, the degree to which Z=HX departs from conditions
(1) and (3) would be at least as instrumental as the degree to
which X departs from conditions (1) and (3) in determining the
robustness of the f test in a one-way ANOVA.

One of the most powerful tests for normality is the
Shapiro-Wilk test [4]. Using the Shapiro-Wilk test as a measure
of departure from normality, computer simulation can be used to
study the behavior of X and 2=HX for a wide variety of

distributions and sample sizes (n;,nj,...ng).



STIMULATION OF RANDOM VARIABLES

All of the distributions studied were generated using
independent uniform(0,1) random variables with suitable
transformations. Independent uniform(0,1) random variables were
generated by scaling random numbers from a computer to be between
0 and 1. It is well known that "random" numbers from a computer
are actually pseudorandom (meaning that they will eventually
begin to repeat after sufficient time). However, such numbers
will pass statistical tests for randomness and for all empirical
purposes can be treated as being random. The pseudorandom number
generator used [5] was,

Xj = frac(m + Xi—1)5 where the "seed" xp was a value

between 0 and 1 , 7 was set to 3.1415926536, and

each xi was carried out to 1074 .
Tests of randomness were performed with various seeds by
generating 10,000 pseudorandom numbers using each particular
seed. The number of scaled pseudorandom numbers that were in each
of the intervals [0,0.25] , (0.25,0.5] , (0.5,0.75] , (0.75,1]
was compared. The more uniformly distributed the scaled
pseudorandom numbers are, the closer together the frequency of
pseudorandom numbers in the respective intervals should be. The
initial seeds tested were arbitrarily chosen. The seed of x5 = 7
x 10”1 was the one finally chosen for the study.

Independent uniform(0,l1) random variables were used to



generate a random sample from a normal(0,1l) distribution with the
Box-Cox transformation. The Box-Cox transformation uses two
independent uniform(0,1) random variables U, and U, to produce
two independent normal(0,1) random variables Z; and Z, as

follows:

1

Z, = (-2LN(1-U;))1/2 . cos(2uyr)

Z, = (-2LN(1-U;))1/2 .« sIN(2U,7)
Similarly random variables with other distributions were
generated using the following. When U is a uniform(0,1) random
variable, then

X = -8LN(1-U) is an exponential distribution with

mean equal to e ,

X = (20-1)1/3 is a bimodal distribution ,
X = 1—(1-U)1/2 is a triangular distribution ,
X = TAN(w (U-0.5)) is a Cauchy distribution

Random samples ranging in size from 5 to 50 were generated from
each of these distributions. The bimodal distribution used has a
pdf

f(x) = (3/2)x%2 -1 <x<1
with mean 0 . The triangular distribution has a pdf

f(x) = 2-2x 0 < x <1
with mean 1/3. With the cCauchy distribution, the mean does not
exist. With the exponential distribution, a mean of =1 was

chosen.



RESULTS AND FINDINGS

A computer program was written and encoded to generate the
scaled random numbers and transform them into random variables
with the different distributions, to compute the necessary
Helmert matrix transformations, and to apply the Shapiro-wilk
test. This program was run with total sample sizes (nix) of 12,
15, 16, 20, 30, 45, 48, and 50 where k ranged between 1 and 10,
and each n; ranged from 2 to 50. In addition, on all the runs the
Shapiro-Wilk test was applied not only to the data transformed by
the Helmert matrix but also to the untransformed data. Thus the
difference in departure from normality could be determined in
each case. Each run of the program was done with 1000 iterations,
and a counter was used to keep track of the number of times the
data was found to be normal using a .05 significance level for
the Shapiro-Wilk test. This was the case with both transformed
data and untransformed data.

In all of the runs with non-normal distributions the
transformed data appeared much more normal than the untransformed
data. In fact, with certain non-normal distributions and sample
sizes, some of the runs resulted in the transformed data having
the appearance of normality almost 90% of the time; while, on the
other hand, the untransformed data almost never appeared to be
normal.

Oout of all the runs there was only one case in which the

transformed data did not have a smaller degree of departure from
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normality. Using a bimodal distribution with a sample size of 50,
the untransformed data had the appearance of normality as often
as the transformed data when k=1. However, this percentage was 0.
(Table 2). Furthermore, when the same data was transformed with
k>1, the percentage of times the data appeared to be normal rose
considerably higher than 0%. This also seemed to be the case with
all the other non-normal data. That is, when transformed with k>1
the appearance of normality occurred more often than when k=1 or,
in other words, the degree of departure from normality was lower
with the same total sample size when k>1.

The only exception +to this was with +the Cauchy
distribution. The data was transformed with k=1, n4=n;=50, and
also with k=10, nj=5 for each nj. However, with k=1 the
appearance of normality occurred 2.2% of the time, while with
k=10 the appearance of normality occurred 2.0% of the time.
Perhaps this was the case because of the ratio between k and the
sample sizes (nj=5 for each i) being rather large compared to the
others. This was the only run where the ratio of k to the sample
sizes nj was larger than one for most nj.

Other runs were done with the ratio between k and sample
size nj reverse that above. One such case was k=5, nj=10 for each
i. This run had the appearance of normality 4.5% of the time with
the Cauchy distribution, more then double that of k=10, nj=5 for
each i. Even though with k=10 the appearance of normality was
less than that for k=1, this was still in support of our

contention because they both had percentages that were above that

11



for the untransformed data (1.3%). Furthermore, for all k lower
than 10 the percentage went up. (Table 3).

As we have already seen when k>1 the transformed data
appear more normal than the transformed data with k=1; however,
this rise in the appearance of normality was not proportional to
the size of k. In fact, between all the non-normal distributions
there was no visible pattern with the size of k and the
appearance of normality. It seemed that for each individual non-
normal distribution and total sample size (nix) there was an
optimal size of k and optimal sample size(s) (the nj's) that
produced the highest appearance of normality. However, more
testing needs to be done in order to see if any pattern does in
fact exist. One pattern which did seem to arise with every non-
normal distribution except the triangular was that the appearance
of normality when nj=nis/k for each i was higher than the
percentage when nj#ni/k for each i. (Figures 1,2,3). Of course,
both of these percentages were higher than with the untransformed
data.

With the normal distribution the transformed data with k>1
was less normal than the untransformed data. (Tables 1,2,3). This
would seem to contradict the theorem which states that
independence and normality are preserved only with normally
distributed data put through orthogonal transformations; however,
a possible reason for this drop in normality may be related to
the fact that the numbers generated were pseudorandom. The rows

nj, nj+ny, ni+np+nj, ...,niy of the matrix H involve the mean of

12



the distribution whereas the other rows do not. With the normal
distribution used this mean is 0, but because the numbers are

pseudorandom and not truly random the mean may no longer be

exactly O.

CONCLUSION AND SUMMARY

For the most part, the results of the simulations support
our hypothesis that orthogonally transformed non-normally
distributed data would appear more normal than the untransformed
data. Some unexpected patterns arose with the transformed data.
In particular, there may exist an optimal size for k and optimal
sample sizes (nj's) yielding the greatest appearance of
normality, and that, with the exception of the triangular and
normal distributions, when nj=ns/k the percentage was higher than
when nj#ns/k for each 1i.

Furthermore, although the Helmert matrix was employed in
this project, the transformation could be based on an infinite
number of other orthogonal matrices. This opens the door even
further for more research, for a different orthogonal matrix may
show different patterns, and possibly there might be a matrix
which is "optimal" in some sense, one that is optimal in the
sense that it yields the highest appearance of normality for non-
normally distributed data. This would give an experimental

explanation of "why" the f test is so robust.
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